量子计算机存储的是“钟钟钟钟钟钟钟钟”。(请自行想象酒店大堂挂的一排钟表)
传统计算中,1和0叠加为1,再叠加一个1,得到0。
量子计算中,“三点”和“零点”叠加为“一点半”,再叠加“三点”,得到的是“两点一刻”。
比起bit,Q-bit更有表现力。一个Q-bit可蕴含无限复杂的数字。在这个意义上“以一抵多”。一个Q-bit投入变换,等于多位数字一起变换,即所谓“并行计算”。
并行计算潜力发挥到极限的情况下,量子计算机的算力比起传统计算机,是2^n∶1。
但要强调的是: 量子计算机的结果来自概率统计。量子计算机与传统不同,它要一次次重复程序,一次次地读数(每次结果都不一样)。周而复始,足够多次(让概率的可信度超过99.99999%)后,统计出各量子位为1和0的比例,那才是需要的数字。所以碰上不太复杂的计算任务,量子计算可能比经典计算机更慢。
彩虹与斑马
有量子计算机之前,数学家就在畅想利用量子比特的“丰富内涵”大大缩减计算时间。不过迄今数学家只证明在两种场景中,量子计算大大快于传统计算机。
首先是破解RSA算法。RSA是现在最常用的加密方法,其机理是利用因数分解的困难——把两个大质数相乘很简单,而把乘积拆成两个质数,计算机可能得算几万年。
所以银行可以公开发送一个几千位的数字,并掌握它的两个质因数,而不担心有人算出这两个质因数——用于制造私有的数字钥匙。
但二十多年前Peter Shor证明一种基于量子计算机的算法,可以轻松分解因数,这也让学界研发量子计算机的兴趣大增。
另一种可能的应用是“搜寻未排序的大数据库”,或者叫“大海捞针”。传统计算机只能一个一个比对目标,而量子计算机则可以并行计算。传统计算机用时是T的话,量子计算机用时是“根号T”。前者要花费1百万小时的任务,后者一千小时就能解决。
除了以上两类计算,量子计算机还被寄希望于未来在化学、制药等领域大发神威。理由是:不同于传统计算机,量子计算机是真正的模拟计算机,可以重现真实的自然(物理学家费曼第一个指出这点)。
传统比特的0和1相当于黑白两色,量子比特的“可以指向任何角度的时针”就相当于全彩色谱,可显示出任何一种颜色。
如果说传统的存储器是斑马,量子存储器里就是彩虹。世界是多彩的,用彩虹去描绘世界,当然更直接,更便捷。
才刚起步
量子很脆弱,动不动就会崩溃。
“要将信息编码在一个非常微小的东西上去,比如一个电子,或一个原子核,都首先要把它孤立开来,让它跟周边不作用。这种细微的控制是很难的。”韩正甫说。
各种量子载体都伴随着独特的困难,比如光子时刻前进,电磁场又左右不了它,操控起来很麻烦。目前研究者大概在实验几十种载体:电子、光子、陷阱里的离子……
韩正甫说:“隶属中科大的中科院量子信息重点实验室,现在正副教授就有50多人,在读的博士生有150人,博士后近30位,一个团队里有很多不同的组,研究的事情虽然互相可以理解,但术业有专攻,比如‘做硅’的就会去研究曝光、清洗等等半导体行业关心的工艺;‘做光’的研究激光发生器、振荡器、光纤之类。”
“国内从1980年代初开始量子光学研究。现在多了不少人,但还是个冷门。专业人才稀缺。”韩正甫说,“其实全世界人才都不够。所以谷歌花了几亿美元从加州大学圣芭芭拉分校挖了一个团队过来,主要研究超导量子计算机。”