而根据中国信通院《2017中美智能交通白皮书》数据显示,美国洛杉矶对4500个红绿灯进行调度优化后,行驶车速从15英里/小时上升至17.3英里/小时。
降低智能车成本
基于车路协同的自动驾驶技术路线,由车载传感器、定位技术构成,其不再是自车决策与控制,而是车车/车路协同决策控制。
“依靠高精度传感器和高精度地图进行自车决策与控制,这种技术路线的门槛极高,对可靠性的要求也极高,”张毅表示,“但基于车路协同的自动驾驶路线则非如此,中远程环境感知可通过车路协同系统获取,近程环境感知则可交给汽车自身。”
这也就意味着,技术依赖从汽车自身转移到车路协同系统上,智能公路则成为自动驾驶的重要部分。其中,交通环境动态感知可降低对高精度传感器的依赖,高精度地图与定位可有效提高和保证位置精确度,交通主体的协同决策可保证运行、动作和决策信息共享。
值得注意的是,降低对高精度传感器的依赖,可以大大降低智能车辆的相关成本。21世纪经济报道记者了解到,当前激光雷达通常以线数区分,如4线、8线、16线、32线、64线及问世不久的128线顶级测试产品。线数是指激光发射光源数,16线产品有16个光源,以此类推。目前上路并搭载激光雷达的无人车基本来自于美国Velodyne,由于产品紧俏,即便年初降价后,Velodyne 16线产品价格仍达到4000美元,百度智能车搭载的64线产品约8万美元。
激光雷达之所以抢手,缘于其拥有精准测距的优点,原理是通过获取激光打在物体上并返回接收器的时间,乘以光速获得距离。由于打出的每一束光都带有相对位置信息,激光雷达还可以利用算法实时生成汽车周围环境的高清数字地图,进行目标跟踪和识别。
但在车路协同系统下,车辆感知设备的精度便有待商榷。“我们团队改造了一辆自动驾驶车,已经获得了路侧牌照,全部改造成本下来大约30万,”张毅告诉21世纪经济报道记者,“当前最好的激光雷达售价大约数百万元,车路协同系统下的雷达设备只需千元级即可。”
不过,随着技术依赖的转移,成本也转移到路侧设备及通信上。当汽车在未来车联网环境中上路,车辆不仅要能感知路面障碍,还要与道路设施进行通信。这就要求在道路的侧方、交叉路口、弯道等位置有铺设好的传感器、引导电缆、通信设施等。
此外,在基本的车路协同之外,一些专门为智能汽车或是未来汽车铺设的公路也正在酝酿。今年,浙江省确认要建设全国首条超级高速公路:杭绍甬高速公路。资料显示,在这条超级高速公路上将构建大数据驱动的智慧云控平台,通过智能系统、车辆管控,有效提升高速公路运行速度,使车辆平均运行速度提升20%-30%。
“下一代高速公路在信息、管理和服务上正发展出崭新动力,”张毅表示,“除了在基础设施数字化、路运一体化、北斗高精度定位等布局之外,智能技术也在催生智能高速公路等形态。”