正如约翰·齐曼(J.Ziman)所言:“不同规模、不同层次的各种技术形成相互共生、寄生与竞争的生态关系,使得任何技术的生存与发展不是孤立的事件”。芯片架构的革命也随着IC业浪潮的演进“合成”向前,从32位到64位,从单核到多核,从同构到异构,每一次架构革命都让芯片产生质的飞跃。而在智能互联的AIoT时代,异构计算芯片成为当仁不让的主角。
毕竟,在经历了“数字化、互联网化、移动互联网化”的洗礼之后,“人工智能化”时代的海量计算需求、算法迭代让传统的通用CPU“难堪重任”,应运而生的异构计算芯片“晋级”成为支撑先进和更复杂AIoT应用的必然选择。作为一种将不同指令集和架构的计算单元(如传统的CPU、GPU、DSP还有创新的TPU、DLA等)融合在一起、实现高效协同运行的计算技术,业界有人认为,将传统架构的芯片比作汽油引擎的话,那么异构计算芯片就是混合动力甚至新能源引擎。
整装待发
不论是什么样的技术路线图,都必须在关键时间节点上更新。而这一“引擎”的“横空出世”其实是市场与技术相互碰撞的结果。
异构计算的显著优势在于实现了性能、成本和功耗均衡的技术,同时也是让最适合的专用硬件去做最适合的事如密集计算或外设管理等,从而达到性能和成本的最优化。这样“各成其就”的异构芯片,理所当然自带光芒。
英特尔中国研究院院长宋继强在上周的英特尔媒体分享会上表示,异构计算不是一个新词,其实上世纪80年代就有了,即超过一种以上的硬件架构设计组合。而这种组合有两种形式,比如将CPU、GPU、FPGA等组成一个一体化设计的SoC,将达到最高的能效比,但需要量大面广,才值得投入;另一种是这些独立的芯片通过板级连接实现异构计算,其优势在于灵活,但板与板之间连接的功耗、带宽都大打折扣。
与之相呼应的是,近几年来不仅众多IP厂商在加强异构芯片IP研发,主流芯片厂商也均加大新一代异构芯片的出新频率,异构芯片开始大行其道,或将迎来新的爆发期。有预计说,在高性能计算、人工智能等应用领域,异构计算芯片市场规模将突破千亿美元。
这一风向标对产业带来的影响或是全方位的,一方面众多芯片厂商加强横向扩展,运用资本力量大肆整合全面出击,构筑异构芯片领域的护城河;另一方面,异构阵营泾渭分明,各大厂商合纵连横,同时一些新生力量亦角逐其中,有望改写产业未来格局。
软硬件挑战
异构计算虽不是全新的概念,但最早的异构融合还基于CPU和GPU,而真正崛起要从2001年用GPU实现通用矩阵计算开始。而且,其“外延”已延伸至CPU、DSP、GPU、ASIC、FPGA等各种计算单元、使用不同类型指令集、不同体系架构的“整合”,让各种核心有效地协同合作。
显然,这激起了“连锁”反应,由于设计难度大、生态系统需重构等挑战,在过去很长一段时间仍处在不断演进当中。毕竟从编程方式、软硬件架构到生态系统,异构计算仍面临着诸多挑战。
其硬件实现就不简单。首先,不同芯片之间的互联布线,要求性能高、速度快,同时功耗要低。其次,要通过混搭方式,将不同种类的、不同技术的芯片封装在一起,支持互联,保持高带宽和高频率,分外复杂。最后,选择大批量生产的工艺,快速验证等等,决定了在硬件上从选择用什么样的基底,到用什么材料实现互联,都需通盘和全面考量。
为了让异构计算发挥最大性能优势,还需要对硬件设计特定的算法以及软件优化,才能够最大化硬件能力,即软硬结合。做到真正的软硬结合,软件环境的优化亦是重中之重,如何打造完善的软硬件体系,让“众选手”各展所长、协同合作,并进而提供良好的生态体系,来支撑异构计算体系的全面应用亦是一大挑战。
可以说,无论是总线及接口、编程工具、存储管理、应用软件技术等,在诸如异构多核架构指令集、微架构、工具链设计等环节仍需投入大量资金和时间。
三大阵营的心机
显然作为新AI时代的“利器”,异构计算将重塑产业格局,各方势力各藏心机,激烈角逐。
目前,全球异构计算领域呈现三足鼎立的态势,分别是以AMD、高通、ARM、三星、北京华夏芯等为主体的全球异构计算系统HSA联盟,以IBM、Google、英伟达为主体的OpenPOWER联盟和英特尔最新提出的超异构计算愿景。