琛ユ湁K2鐨勬恫浣撻挋鈥斺€旀堡鑷e€嶅仴閽橠K锛屽ソ鍚告敹鎵嶄簨鍗婂姛鍊�鏆戝亣鑲犺儍鏄撳嚭闂锛宭ifespace鐩婄敓鑿屽府浣犳墦閫犲仴搴峰ソ鈥滆偁鈥濇€�棣栧垱鎬х鐮旀垚鏋滐細鍖椾含瀹濇灚鐢熺墿绁炵粡閰告敼鍠凥IE娌荤枟鏁堟灉绉戝鎶よ倽鏀荤暐锛氶泦4閲嶆姢鑲濇绮逛簬涓€韬殑鍋ュ畨閫備笉瀹归敊杩�瑙i攣韬潗绠$悊鏂板Э鍔匡細lifespace灏忚摑鑵扮泭鐢熻弻鍔╀綘瀹炵幇绉戝韬潗绠$悊濡備綍绉戝闄嶈鑴傦紵涓绘墦澶╃劧鎴愬垎鐨勮垝鐧惧畞绾宠眴绾㈡洸鑳跺泭浜嗚В涓�鏄嗚吘涓浗璧典笝娑涳細纾佸甫鏄喎鏁版嵁鐨勬渶浣冲瓨鍌ㄤ粙璐�濡備綍澧炲己鍏嶇柅鍔涳紵姹よ嚕鍊嶅仴铔嬬櫧绮夊ソ钀ュ吇鏉モ€滃姪鏀烩€�Canalys璋冪爺锛氫腑鍥戒紒涓氬浜庝笂浜戠殑闇€姹備粛鐒朵綆杩�澧炲箙瓒�30% 鍗庝负涓婅皟2023鎵嬫満鍑鸿揣閲忚嚦4000涓囬儴绐佺牬澶氶」閲嶇偣鎶€鏈� 娴疆鍙戝竷鍏ㄦ柊绠楀姏缃戠粶鎿嶄綔绯荤粺鑷垜鐪嬭“锛熻嫻鏋滃ぇ骞呭墛鍑廙R澶存樉閿€鍞洰鏍囪嚦15涓囧彴鍗庝负浜戞寮忓彂甯冩柊涓€浠h嚜鐮斿垎甯冨紡鏁版嵁搴揋aussDB鍏ㄧ悆绗竴瀹讹紒涓夋槦QD-OLED鑾稰antone鍙岃壊褰╂潈濞佽璇�娴嬪翱閰歌瘯绾告€庝箞鐢�3999鍏冭捣锛佹姌鍙犲睆鎵嬫満moto razr 40绯诲垪姝e紡鍙戝竷璐碉紒绱㈠凹鎺ㄥ嚭TOUGH涓夐槻CFexpress Type A瀛樺偍鍗�鍗庝负姝e紡鍙戝竷鏅虹畝鍏ㄥ厜鑱旀帴鎴樼暐鍙�6娆鹃噸纾呮柊鍝�鑱斿彂绉戣懀浜嬮暱钄℃槑浠嬶細棰勮鎵嬫満涓氬姟鏈潵涓ゅ勾浼氬闀�娴嬪翱閰歌瘯绾告€庝箞鐢�鑵捐浜慐dgeOne鍏ラ€塆artner DDoS缂撹В鏂规甯傚満鎸囧崡鍗庝负OceanStor Pacific鍒嗗竷寮忓瓨鍌ㄨ幏IO500姒滅涓€灏忕背鍙戝竷2023骞翠竴瀛e害璐㈡姤锛氭壄浜忎负鐩堬紝鍒╂鼎涓婃定鑱旀兂涓婁竴璐㈠勾钀ユ敹鍒╂鼎鍙屽弻涓嬫粦 闈濸C鏀跺叆鍗犳瘮杩�40%浣宠兘棣栨RF鈥滈ゼ骞测€濋暅澶碦F28mm F2.8 STM姝e紡鍙戝竷绱㈠凹鍙戝竷杞诲阀鍨嬪叏鏅0鍥為煶澹丠T-S2000 鍞环2990鍏�鐢ㄥ弸钁d簨闀垮吋CEO鐜嬫枃浜細鍏ㄩ潰鏁版櫤鍟嗕笟鍒涙柊鏃朵唬鍒版潵涓叴TECS浜戝钩鍙拌繛缁笁骞磋幏GlobalData Leader璇勭骇鍐呮牳鏁伴噺涓轰笟鐣屾渶楂橈紒Ampere鍙戝竷192鏍窤RM澶勭悊鍣�Gartner锛氳吘璁簯鑾稢PaaS銆丆RM澶氫釜璧涢亾鍥藉唴绗竴
您现在的位置:首页 >> IT >> 正文
邓释天论人脸识别技术的终极形态VR人脸识别实时成像(节选)
发表时间:2019年4月16日 08:50 来源:新科技 责任编 辑:U

摘要:通过对人脸识别以及3D重建技术的研究,本文使用手机前置镜头拍摄正脸和侧脸照片,根据陀螺仪角度和面部形体解剖特点测算3维立体空间的顶点信息,并把顶点信息通过智能判定转为多边形模型信息,最后根据多边形模型特征推算出人脸结构特征,并赋予人工智能信息,实现虚拟角色的人脸识别和表情识别等AI特质。最后根据识别的特征信息连接3D毛发和身体形体、配饰等,即完成真正的人脸识别与3D重建,并且具有实时交互功能。

1、引言

虽然近年来,人脸识别取得了长足的进步,但是仍受到一些因素的制约,如人脸角度、光照条件和表情的不同变化等。通过对人脸识别以及3D重建技术的研究可知,人脸识别算法是模式识别和计算机视觉领域一个重要的研究内容[1-2]。

2014年Kzaemi[3]等人提出了一个用于学习整体回归树的通用框架,这个框架优化了平方误差损失的和,并且自然的处理丢失或部分标记的数据。可以直接从像素强度的稀疏子集估计得人脸的标记点位置。采用标准数据即可训练参数,并且计算速度非常快。1996年Scharstein和SZELISKI提出了几种基于迭代扩散支持的不同视差假设下的算法,并根据视差估计的当前质量对扩散量进行了局部控制;同时提出了一种明显优于基于区域匹配和规则扩散的新的贝叶斯估计方法。2010年Beeler[4]提出了一种用于捕获毛孔尺度几何图形的标准立体重建方法(modifinement),它使用一种定性的方法来产生视觉逼真的结果。同时提出了一种适合于面部捕捉系统的校准方法。系统贡献包括在演播室设置中的捕捉,包括在演播室中的捕捉,从消费者的双目立体相机上捕捉,扫描不同性别、种族和年龄的面孔,捕捉。具有高度瞬态的面部表情,并扫描物理掩膜以提供地面真相验证。

上述方法在实验室数据中都取得了一定的成效,但是对于实际情况下光照和角度更为复杂的人脸图片,识别性能却不尽如人意,本文使用手机前置镜头拍摄正脸和侧脸照片,根据陀螺仪角度和面部形体解剖特点测算3维立体空间的顶点信息,并把顶点信息通过智能判定转为多边形模型信息,最后根据多边形模型特征推算出人脸结构特征,并赋予人工智能信息,实现虚拟角色的人脸识别和表情识别等AI特质。

2、算法的预处理和初始化

通过对人脸识别以及3D重建技术的研究,提出了动态提取特征的方法[5-6]用于提取不同角度下的人脸特征。算法流程图如图1所示。

图片1.jpg

图1 基于不同角度的人脸3D重建算法流程图

3、人脸3D重建

记为一个向量为3D人脸的位置信息:

图片3.jpg
其中,
图片10.jpg
个结点中第
图片33.jpg
个的坐标信息为
图片11.jpg
。新的形状模型可表示为:
图片4.jpg
其中,
图片21.jpg
为形状向量的因子系数向量,表示平均形状,形状信息前
图片34.jpg
个主成分向量组成的矩阵为
图片35.jpg
。定义2D形状向量
图片36.jpg
,新的2D形状模型表示为:
图片5.jpg
其中,
图片14.jpg
图片15.jpg
轴部分为
图片16.jpg
图片17.jpg
,将3D形状模型
图片12.jpg
以估计的人脸角度旋转,然后再映射至
图片43.jpg
图片44.jpg
其中,
图片23.jpg
为角度旋转矩阵,
图片24.jpg
为映射矩阵,可得新的重建公式为:
图片39.jpg
通过上述研究可知系数向量
图片40.jpg
不变。

4、动态特征提取

[1]  [2]  [3]  
高层访谈
蚂蚁金服副总裁刘伟光:构筑敏捷能力中心,打造下一代数字银行“操作..
蚂蚁金服副总裁刘伟光在演讲中指出,银行数字化转型是一个逐步递进的旅程,敏捷能力中心的打造..
凌动智行史文勇:品智出行, 重新定义车辆对生活的价值和意义
众所周知,手机是基础的通讯工具,车是基础的交通或者出行工具,而发动机是传统车里面非常高的..
观点态度
云计算的第二个十年:三大运营商如何迎接?
2018年,我国云计算进入第二个十年。站在国家方队里三大运营商的云计算也进入了新的发展阶段。<..
国内手机市场半年报:头部格局定型 中小品牌陷入集体焦虑
2018年已过半,回看这半年, 头部品牌的吸附效应越来越明显,中小品牌正陷入到集体焦虑中。

..
移动互联
手机
智能设备
汽车科技
通信
IT
家电
办公打印
企业
滚动
相关新闻
关于我们 | 联系我们 | 友情链接 | 版权声明
新科技网络【京ICP备18031908号-1】
Copyright © 2018 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。