当然,除了在指令集方面的进化之外,针对不同的应用类型,英特尔也在至强产品框架内推出了更多负载优化型产品。例如面向NFV领域的后缀为N的系列产品,面向大规模云化基础架构的V后缀系列处理器,面向搜索应用的S后缀系列、面向物联网应用的T后缀系列以及采用Speed Select技术的、后缀为Y的三合一系列处理器(适配多种Profile,在BIOS中切换以实现对相应负载的优化)。此外,英特尔还专门推出了一款面向网络应用及网络边缘解决方案至强D-1600处理器,基于这款处理器,英特尔还推出了专门应用在CDN等领域的数据加密和压缩加速卡——QAT。
而除了这些CPU领域中的应用场景细分产品之外,英特尔还有应用在海量数据吞吐设备中的FPGA、面向能效敏感型应用的ATOM系列、专业的神经网络加速芯片NERVANA、面向AI编程用户和学生群体的Movidius神经网络计算加速棒(U盘设计、无风扇)等等一系列面向不同负载类型和应用场景的产品。
这些产品加在一起共同构成了英特尔的XPU体系。
这些产品虽然无法做到所有计算领域和场景的全覆盖,但其中的每一款产品都包含了有的放矢的针对性设计,是可以满足不同类型用户需求的。
3、 内存和存储
除了以处理器为中心之外,冯诺依曼计算机架构的最大特点就要算是多级存储了。
根据性能的不同,计算机内部的存储部件大致可以分为三层:性能最好的CPU内置缓存、性能第二的系统内存以及性能最差但容量更高的磁记录存储。
在通常的认知下,存储分层颗粒度越小,性能过度越平滑,计算机系统的整体运行效率也就越高。因此,以现在的眼光来审视传统计算机架构内部的三级存储划分,我们很容易发现其中的不合理之处:内存与磁介质存储之间性能差距过大。闪存介质的出现能够通过在两者之间增加一个热数据层的方式在一定程度上解决这一问题。
之所以要用“一定程度上”这个词,是因为即便是在带宽更高、延迟更小的NVMe协议之下,目前的SSD产品也普遍只能达到3xxx MB/s和ms级响应的性能水平,这与DDR4内存到CPU缓存之间动辄10万MB/s的带宽和以ns为单位的延迟之间仍然有巨大的性能差距。
如果再加一层,对于操作系统和应用的挑战太大,很难在短时间内普及。因此,英特尔给出的解决方案便是傲腾数据中心级持久性内存。
简单来讲,傲腾内存所采用的3D Xpoint介质是一种在延迟响应、传输速率、使用寿命等方面远超过目前的NAND闪存的产品;而相对于DRAM颗粒,3D Xpoint介质则拥有非易失性和容量方面的优势。将它与DRAM在DIMM上混合使用能够在不对现有计算机体系造成太大挑战的情况下实现计算机性能的大幅提升(现阶段,性能提升的幅度与使用场景密切相关)。
第二代至强可扩展处理器已经全面加入了对傲腾数据中心级持久内存的支持。目前,傲腾持久内存有两种应用模式,一种是APP Direct Mode,另一种是Memory Mode。
在APP Direct Mode中,DRAM与傲腾持久内存同时作为系统内存出现在操作系统与应用面前,应用需要针对两种内存的性能特点有区别的使用两种介质;DRAM负责承担IO性能,而傲腾持久内存则凭借容量和非易失性的特点提供容量和可靠性。当然,这需要应用在内存操作机制上做出调整并进行针对性的调优。
目前,支持这一模式的主要应用便是SAP的HANA内存数据库和开源的Redis内存数据库。在SAP HANA应用中,傲腾持久内存与DRAM的联合应用创造了9.1B的IO性能世界纪录,而在Redis中,傲腾持久内存的使用也能带来最多8倍的性能提升。
在Memory Mode中,傲腾持久内存则成为系统主内存,而DRAM则从系统界面“消失”,只以傲腾内存的高速缓存形式工作。Memory Mode模式下,操作系统和应用均无需进行定制化开发,两种介质的具体操作完全由驱动等来实现。