您现在的位置:首页 >> 新•资讯 >> 正文
偶数科技的创新和探索:新一代云原生湖仓一体
发表时间:2022年8月25日 18:59 来源:新科技 责任编 辑:麒麟

去年,热门数据库厂商Databricks和Snowflake因TPC-DS测试结果在湖仓战场正面开撕,让很多业内吃瓜群众大呼过瘾,我们暂且不论两企业究竟孰强孰弱。事实上,作为大数据分析赛道的代表性厂商,不论是具备数据仓库功能的数据湖工具Databricks,还是借鉴数据湖范式的可扩展数据仓库Snowflakes,其发展路线都说明“湖仓一体化”已成为了目前市场主流的技术发展方向。

虽然业界对于湖仓一体的价值是高度认同的,但作为一种新兴的架构,大多数公司对于湖仓一体仍处在初期的探索阶段,有些企业甚至对于要选择怎样的湖仓一体架构仍旧是云里雾里。很多人难免会问,我们到底需要什么样的湖仓一体?

1 当下企业对湖仓的需求场景

随着网络的高速发展,产生的数据也爆炸性增长,企业对数据的使用也逐步从离线场景到实时数据分析场景的转变。刚开始,很多企业主要是利用离线场景对历史数据进行分析,而随着业务发展到一定规模以后,离线数据的缺点就愈发凸显,公司的业务方、决策方对实时化数据提出了更高的诉求,希望从业务端获取到数据以后,便能够立即被清洗处理,从而满足基于数据的事前预测、事中判断和事后分析。

实时数据分析的需求场景一般分为四个层面:

运营层面:实时业务变化、实时营销效果、当日业务趋势分析;

用户层面:搜索推荐排序、实时行为等特征变量的生产,为用户推荐更精准的内容;

风控层面:实时风险识别、反欺诈、异常交易等;

生产层面:实时监控系统的稳定性和健康状况等。

不难发现,无论是互联网企业还是传统企业,数据的时效性都被摆在了重要位置,甚至有些企业已经从 PV、UV 指标等单点实时化进阶到了全面实时化的阶段。也正于因此,数据的时效性也就成为了企业判断自身架构设计是否满足真正湖仓一体的关键因素。

总体来看,企业到底需要怎样的湖仓一体架构?除了要满足实时化数据需求这一关键要素以外,数据一致性、超高并发、云原生、支持多类型数据以及一份数据也被列入了湖仓一体的 ANCHOR 六大特征。

2 基于OushuDB的云原生湖仓一体

如前文所言,随着市场竞争和用户需求的不断变幻,企业对于数据的时效性需求不断攀升,但实时数据的分析场景出现以后,也给数据技术的实现带来了很大的挑战。目前,无论是擅长事务型工作的数据仓库,还是数据类型更为丰富的数据湖,亦或是 Hadoop+MPP 模式下的湖仓分体,其都是基于 T+1 设计的,即便引入了流处理引擎实现了部分固定模式的实时分析,仍无法达到 T+0 全实时的水平。

为了让数据实现全面实时化,行业内也衍生出了不同的湖仓一体方案,可以将其大致分为两类:一类是基于 Hadoop 的改造方案,拿 Hudi、Iceberg 两款开源数据湖项目为例,结构化、半结构化及非结构化的数据通过 SparkSQL/Flink 引擎不断流转与计算,再基于 HDFS/S3 实现事务存储,但此类方案在性能支持上与 Hadoop 的区别并不大;

另一类则是从新的基础架构发展出的云原生数据仓库,其中比较典型的代表有 Snowflake、OushuDB 方案,二者均突破了传统 MPP 和 Hadoop 的局限性,实现了存储和计算的完全分离,并且通过虚拟计算集群技术,其单个集群可以达到数万节点,同时在复杂查询性能和 SQL 兼容性上也非常完善。在国外,Snowflake 可以算作落地湖仓一体的成功先例之一,而偶数科技围绕 OushuDB 提出的湖仓一体解决方案,也成为国内该赛道中的一颗耀眼的新星。

若想了解 OushuDB 性能的强大之处,我们大抵可以从以下这组公开数据中窥知一二:由于 OushuDB 使用了 SIMD(单指令多数据流)的执行器优化策略,其全面性能超过 Spark 性能相差 8 倍以上,最大相差 55 倍。通过横向对比几类湖仓一体解决方案,我们发现,在 T+0全实时方面,基于 OushuDB 的方案也展现出了较大的优势。

3 为什么偶数科技的实时湖仓性能卓越?

那么问题来了,偶数科技是如何实现具备实时能力的湖仓一体架构?我们可以先从 Lambda 以及 Kappa 这两种典型架构的优劣说起。

为了能够让流处理与批处理配合使用,Lambda 架构应运而生,基于这套架构,任务可以根据是否需要被实时处理进行分离,然而,这套架构背后也隐藏了很多问题。首先,离线和实时两套方案会产生不同的计算结果,当发生数据产生不一致问题时,对比排查需要花费较长时间。此外,由于 Lambda 架构由多个引擎和系统组成,其学习成本、运维成本也相对较高。

可见,Lambda 架构在开发割裂感、资源重复、集群维护成本以及数据一致性等问题上存在较大的问题。为了解决 Lambda 架构需要维护两套代码的难题,Kappa 架构又出现了,即在 Lambda 架构的基础上移除了批处理层,利用流计算的分布式特征,加大流数据的时间窗口,统一批处理和流处理,最终处理后的数据可以直接给业务层使用。相比之下,虽然 Kappa 架构的优点显而易见,但其也存在以下两方面的缺点:

依赖 Kafka 等消息队列来保存所有历史,而 Kafka 难以实现数据的更新和纠错,发生故障或者升级时需要重做所有历史,周期较长;

Kappa 依然是针对不可变更数据,无法实时汇集多个可变数据源形成的数据集快照,不适合即席查询。

面对 Lambda 架构与 Kappa 架构的局限性,业内也亟需一种新型技术架构来满足企业的实时分析需求。为此,偶数科技在 2021 年初提出了同时满足实时流处理、实时按需分析以及离线分析的 Omega 架构,其是根据流数据处理系统和实时数仓构成的。

需要强调的一点是,在 Omega 架构中需要变更流处理版本时,不再需要流处理引擎访问 Kafka,直接访问 OushuDB 即可获得所有历史数据,这样一来,便规避了 Kafka 难以实现数据更新和纠错的问题,大大提升了数据处理的效率。在 Omega 全实时架构的加持下,偶数科技实现了具备实时能力的湖仓一体,即实时湖仓。

4 行业的广泛认可与偶数的持续创新

尽管OushuDB只是一个诞生5年的云数据库,但OushuDB却是由国内顶尖工程师自主开发,其研发团队曾主导国际顶级的数据库开源项目,符合国家信创标准。偶数科技作为一家新兴的数据库公司,自2017年诞生以来,作为微软加速器和腾讯加速器成员企业,已经获得世界顶级投资机构红杉中国、腾讯、红点中国与金山云的四轮投资,并入选福布斯中国企业科技 50 强以及美国著名商业杂志《快公司》中国最佳创新公司 50 强。

除了OushuDB,偶数科技的实时湖仓一体解决方案还包含自动化机器学习平台 LittleBoy 、数据分析与应用平台Kepler以及数据管理平台 Lava等多个产品, 深厚的研发实力和优秀的产品性能吸引了广泛的知名用户群,目前已在金融、电信、制造、公安、能源和互联网等行业得到广泛的部署和应用。

高层访谈
李邵华:芯片自主化迎最佳窗口期
李邵华:芯片自主化迎最佳窗口期
中兴通讯刘金龙:价值驱动 云网生态激活转型新动能
中兴通讯刘金龙:价值驱动 云网生态激活转型新动能
观点态度
5G毫米波网速优势显现,少了高速路的5G不完整
随着5G网络目前在全球各地的开通,5G毫米波在峰值速率上已经展现出了巨大优势。同时,工信部在..
手机厂商这半年:互怼变日常,多品牌成突围关键
2019年的手机行业,可以说是非常热闹的,仅仅上半年,“华米OV”的隔空互怼便开始频繁上演。
移动互联
手机
智能设备
汽车科技
通信
IT
家电
办公打印
企业
滚动
相关新闻
关于我们 | 联系我们 | 友情链接 | 版权声明
新科技网络【京ICP备18031908号-1
Copyright © 2020 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。