璺�鐞涖儲婀並2閻ㄥ嫭鎭担鎾绘寢閳ユ柡鈧梹鍫¢懛锝呪偓宥呬淮闁芥K閿涘苯銈介崥鍛婃暪閹靛秳绨ㄩ崡濠傚閸婏拷璺�閺嗘垵浜i懖鐘哄剭閺勬挸鍤梻顕€顣介敍瀹璱fespace閻╁﹦鏁撻懣灞藉簻娴g姵澧﹂柅鐘蹭淮鎼村嘲銈介垾婊嗗亖閳ユ繃鈧拷璺�妫f牕鍨遍幀褏顫栭惍鏃€鍨氶弸婊愮窗閸栨ぞ鍚€规繃鐏氶悽鐔哄⒖缁佺偟绮¢柊鍛婃暭閸犲嚗IE濞岃崵鏋熼弫鍫熺亯璺�缁夋垵顒熼幎銈堝€介弨鑽ゆ殣閿涙岸娉�4闁插秵濮㈤懖婵囶槻缁€涚艾娑撯偓闊偆娈戦崑銉ョ暔闁倷绗夌€瑰綊鏁婃潻锟�璺�鐟欙綁鏀i煬顐f綏缁狅紕鎮婇弬鏉啃崝鍖$窗lifespace鐏忓繗鎽戦懙鎵抄閻㈢喕寮婚崝鈺€缍樼€圭偟骞囩粔鎴濐劅闊偅娼楃粻锛勬倞璺�婵″倷缍嶇粔鎴濐劅闂勫秷顢呴懘鍌︾吹娑撶粯澧︽径鈺冨姧閹存劕鍨庨惃鍕灊閻ф儳鐣炵痪瀹犵湸缁俱垺娲搁懗璺烘抄娴滃棜袙娑擄拷璺�閺勫棜鍚樻稉顓炴禇鐠у吀绗濆☉娑崇窗绾句礁鐢弰顖氬枎閺佺増宓侀惃鍕付娴e啿鐡ㄩ崒銊ょ矙鐠愶拷璺�婵″倷缍嶆晶鐐插繁閸忓秶鏌呴崝娑崇吹濮广倛鍤曢崐宥呬淮閾斿娅х划澶娿偨閽€銉ュ悋閺夈儮鈧粌濮弨鐑┾偓锟�璺�Canalys鐠嬪啰鐖洪敍姘厬閸ユ垝绱掓稉姘嚠娴滃簼绗傛禍鎴犳畱闂団偓濮瑰倷绮涢悞鏈电秵鏉╋拷璺�婢х偛绠欑搾锟�30% 閸楀簼璐熸稉濠呯殶2023閹靛婧€閸戦缚鎻i柌蹇氬殾4000娑撳洭鍎�璺�缁愪胶鐗径姘躲€嶉柌宥囧仯閹垛偓閺堬拷 濞搭亝鐤嗛崣鎴濈閸忋劍鏌婄粻妤€濮忕純鎴犵捕閹垮秳缍旂化鑽ょ埠璺�閼奉亝鍨滈惇瀣€滈敍鐔诲閺嬫粌銇囬獮鍛閸戝粰R婢跺瓨妯夐柨鈧崬顔炬窗閺嶅洩鍤�15娑撳洤褰�璺�閸楀簼璐熸禍鎴烆劀瀵繐褰傜敮鍐╂煀娑撯偓娴狅綀鍤滈惍鏂垮瀻鐢啫绱¢弫鐗堝祦鎼存弸aussDB璺�閸忋劎鎮嗙粭顑跨鐎硅绱掓稉澶嬫ЕQD-OLED閼剧òantone閸欏矁澹婅ぐ鈺傛綀婵炰浇顓荤拠锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�3999閸忓啳鎹i敍浣瑰閸欑姴鐫嗛幍瀣簚moto razr 40缁鍨锝呯础閸欐垵绔�璺�鐠愮绱掔槐銏犲嚬閹恒劌鍤璗OUGH娑撳妲籆Fexpress Type A鐎涙ê鍋嶉崡锟�璺�閸楀簼璐熷锝呯础閸欐垵绔烽弲铏圭暆閸忋劌鍘滈懕鏃€甯撮幋妯兼殣閸欙拷6濞嗛箖鍣哥壕鍛煀閸濓拷璺�閼辨柨褰傜粔鎴f噣娴滃鏆遍拕鈩冩娴犲绱版0鍕吀閹靛婧€娑撴艾濮熼張顏呮降娑撱倕鍕炬导姘杻闂€锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�閼垫崘顔嗘禍鎱恉geOne閸忋儵鈧artner DDoS缂傛捁袙閺傝顢嶇敮鍌氭簚閹稿洤宕�璺�閸楀簼璐烵ceanStor Pacific閸掑棗绔峰蹇撶摠閸屻劏骞廔O500濮掓粎顑囨稉鈧�璺�鐏忓繒鑳岄崣鎴濈2023楠炵繝绔寸€涳絽瀹崇拹銏″Г閿涙碍澹勬禍蹇庤礋閻╁牞绱濋崚鈺傞紟娑撳﹥瀹�璺�閼辨梹鍏傛稉濠佺鐠愩垹鍕鹃拃銉︽暪閸掆晜榧庨崣灞藉蓟娑撳绮� 闂堟扛C閺€璺哄弳閸楃姵鐦潻锟�40%璺�娴e疇鍏樻#鏍儥RF閳ユ粓銈奸獮娴嬧偓婵嬫殔婢剁ⅵF28mm F2.8 STM濮濓絽绱¢崣鎴濈璺�缁便垹鍑归崣鎴濈鏉炶闃€閸ㄥ鍙忛弲顖氾紣閸ョ偤鐓舵竟涓燭-S2000 閸烆喕鐜�2990閸忥拷璺�閻€劌寮搁拋锝勭皑闂€鍨悑CEO閻滃鏋冩禍顒婄窗閸忋劑娼伴弫鐗堟閸熷棔绗熼崚娑欐煀閺冩湹鍞崚鐗堟降璺�娑擃厼鍙碩ECS娴滄垵閽╅崣鎷岀箾缂侇厺绗侀獮纾嬪箯GlobalData Leader鐠囧嫮楠�璺�閸愬懏鐗抽弫浼村櫤娑撹桨绗熼悾灞炬付妤傛﹫绱扐mpere閸欐垵绔�192閺嶇RM婢跺嫮鎮婇崳锟�璺�Gartner閿涙俺鍚樼拋顖欑隘閼剧áPaaS閵嗕竼RM婢舵矮閲滅挧娑壕閸ヨ棄鍞寸粭顑跨
您现在的位置:首页 >> 滚动 >> 正文
基于DLP的安全监控成像系统及应用
发表时间:2014年4月21日 18:07 来源:安防知识网 责任编辑:编 辑:麒麟

测量算法与使用的样式类型及数量会影响测量的速度与分辨率和准确度。测量算法的软件实施是在PC或嵌入式处理器上执行。测量算法的输出可有多个种类。示例之一是颜色变换深度(景深)下端手掌示意)。另一个由3D测量作可视化程序处理,例如MeshLab,mesh指每英寸分成的等分大小,其含义是3D测量大小为每英寸分成的等分大小,而Lab色彩模型是由照度L和有关色彩的a,b三个要素组成,L表示亮度,a表示从洋红色至绿色的范围,b表示从黄色至蓝色的范围。在测量期间,主题科目必须保持固定(静态)以避免模糊、带条纹和测量错误。于是在实时信息处理应用上,可用DSP软件和开发工具套件快速启动生物辨识的分析,即指纹识别和人脸检测。如用TI公司产的TMS320C6748DSP开发(指纹识别和人脸检测)实时分析应用。

又如新型的DLP?LightCrafterTM4500是一个具有高亮度和高分辨率及灵活又高度精确的光控制开发平台,是一个全新的光控制解决方案。使用DLPLightCrafterTM4500可触发CCD摄像头,这是什么原因?DLP?LightCrafterTM4500采用模块化设计,通过更光学引擎和LED驱动,可以满足多样化的设计需求。凭借该评估模块(EVM),可加快需要小尺寸架构和智能高速模式显示的解决方案的开发周期。通过基于USB的应用程序编程接口(API)和主机图形用户界面(GUI),开发人员可以轻松创建、存储和放映高速序列。两个输入和两个输出的可编程的触发器,允许更简单的外部传感器和摄像机同步。标准接口用于连接各种系统级设计外设。可以支持在安全或工业、医疗、电信等应用领域。这对DLP来讲是一些新的领域。该平台的还可针对3D测量,就是光谱分析及机器视觉方面的一些应用,还有智能照明。

九、基于DLP技术的光谱分析

光谱分析是用于识别和定义物理材料特性解决方案的一项强大技术。图3为基于DLP技术的光谱分析构建框图。

基于DLP技术的光谱分析构建的解析

光谱分析是一项利用物理材料样本对各种波长光线存在不同吸收(或发射)的原理来识别和定义物理材料特性的强大技术。样本(见图3右端菱形间隔所示彩条)可能是处于任何物理阶段的材料:固体、液体、气体或等离子,可能是发光或吸光材料。光谱分析中所用光线可能处于人眼可见波长范围内,也可能处于电磁波谱的红外线或紫外线区。光谱分析要求将光线扩散为彩虹波长,以便可以测量(通常也进行记录)相对于波长的光线强度变化。

光谱分析利用色散光学元件,在空间上将光谱扩散为分离波长。有时使用棱镜,但通常使用衍射光栅(见图3中下所示彩条),因为其具有较高的色散,能够针对宽范围光波长进行优化。光谱分析中使用几个光学和物理排列。图3中所示的光谱分析应用用于识别或描述某些材料的制备样本(必须为均质透光)。样本可以是固体、半固体(凝胶)、粉末或液体,这取决于夹持样本的方式。图3中示例为材料样本在载玻片上扩散的大致情况。宽带光源(可能是白炽灯泡)产生光线,然后经收集并使之成为平行光,再通过一条狭缝。狭缝形成明显的几何状光源,照射在衍射光栅上。衍射光栅恰好在不同的角度反射光线的每个波长,从而在DLP?数字微镜器件(DMD)的镜片阵列上扩散分散的光谱。

嵌入式处理器命令DMD控制器只打开精确的镜片列,其由每个时刻所需的特定波长的光线照亮。在很短的时间内,连续扫描整个光谱,用来照亮样本。单点传感器(非阵列)检测到光线通过样品,嵌入式处理器对信号进行处理。完成的测量结果显示在光线强度与波长图形中。此曲线的独特形状构成了被检查材料的光谱特征。通过将样本的光谱特征与存储的参考特征相对比,有可能查明样本的物理和化学成份。传感器的选择同样取决于要测量的波长范围。有关传感器的其他考虑事项包括所需的灵敏度、采集速度、噪声、温度范围、接口要求、成本和其他因素。系统控制和信号处理由嵌入式处理器(如TIOMAP?)来实现,并由电源设备供电。图3中未显示光学布局和组件的详情。该图旨在尽可能简单地表达基于DLP的光谱分析应用的完整功能。为实现完整功能,实际产品将需要额外的光学组件和光学设计。其中包括DMD、DMD控制器芯片以及DMD模拟控制芯片(取决于具体的DLP?芯片组)。可提供具有不同DMD尺寸、分辨率和其他规格的各种DLP?芯片组。根据光谱分析系统的规格来确定最佳DLP?芯片组,如要测量的波长范围、所需的波长分辨率、频谱测量的采集速度等。

[1]  [2]  [3]  [4]  
关于我们 | 联系我们 | 友情链接
新科技网络【京ICP备14006744号】
Copyright © 2014 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。