琛ユ湁K2鐨勬恫浣撻挋鈥斺€旀堡鑷e€嶅仴閽橠K锛屽ソ鍚告敹鎵嶄簨鍗婂姛鍊�鏆戝亣鑲犺儍鏄撳嚭闂锛宭ifespace鐩婄敓鑿屽府浣犳墦閫犲仴搴峰ソ鈥滆偁鈥濇€�棣栧垱鎬х鐮旀垚鏋滐細鍖椾含瀹濇灚鐢熺墿绁炵粡閰告敼鍠凥IE娌荤枟鏁堟灉绉戝鎶よ倽鏀荤暐锛氶泦4閲嶆姢鑲濇绮逛簬涓€韬殑鍋ュ畨閫備笉瀹归敊杩�瑙i攣韬潗绠$悊鏂板Э鍔匡細lifespace灏忚摑鑵扮泭鐢熻弻鍔╀綘瀹炵幇绉戝韬潗绠$悊濡備綍绉戝闄嶈鑴傦紵涓绘墦澶╃劧鎴愬垎鐨勮垝鐧惧畞绾宠眴绾㈡洸鑳跺泭浜嗚В涓�鏄嗚吘涓浗璧典笝娑涳細纾佸甫鏄喎鏁版嵁鐨勬渶浣冲瓨鍌ㄤ粙璐�濡備綍澧炲己鍏嶇柅鍔涳紵姹よ嚕鍊嶅仴铔嬬櫧绮夊ソ钀ュ吇鏉モ€滃姪鏀烩€�Canalys璋冪爺锛氫腑鍥戒紒涓氬浜庝笂浜戠殑闇€姹備粛鐒朵綆杩�澧炲箙瓒�30% 鍗庝负涓婅皟2023鎵嬫満鍑鸿揣閲忚嚦4000涓囬儴绐佺牬澶氶」閲嶇偣鎶€鏈� 娴疆鍙戝竷鍏ㄦ柊绠楀姏缃戠粶鎿嶄綔绯荤粺鑷垜鐪嬭“锛熻嫻鏋滃ぇ骞呭墛鍑廙R澶存樉閿€鍞洰鏍囪嚦15涓囧彴鍗庝负浜戞寮忓彂甯冩柊涓€浠h嚜鐮斿垎甯冨紡鏁版嵁搴揋aussDB鍏ㄧ悆绗竴瀹讹紒涓夋槦QD-OLED鑾稰antone鍙岃壊褰╂潈濞佽璇�娴嬪翱閰歌瘯绾告€庝箞鐢�3999鍏冭捣锛佹姌鍙犲睆鎵嬫満moto razr 40绯诲垪姝e紡鍙戝竷璐碉紒绱㈠凹鎺ㄥ嚭TOUGH涓夐槻CFexpress Type A瀛樺偍鍗�鍗庝负姝e紡鍙戝竷鏅虹畝鍏ㄥ厜鑱旀帴鎴樼暐鍙�6娆鹃噸纾呮柊鍝�鑱斿彂绉戣懀浜嬮暱钄℃槑浠嬶細棰勮鎵嬫満涓氬姟鏈潵涓ゅ勾浼氬闀�娴嬪翱閰歌瘯绾告€庝箞鐢�鑵捐浜慐dgeOne鍏ラ€塆artner DDoS缂撹В鏂规甯傚満鎸囧崡鍗庝负OceanStor Pacific鍒嗗竷寮忓瓨鍌ㄨ幏IO500姒滅涓€灏忕背鍙戝竷2023骞翠竴瀛e害璐㈡姤锛氭壄浜忎负鐩堬紝鍒╂鼎涓婃定鑱旀兂涓婁竴璐㈠勾钀ユ敹鍒╂鼎鍙屽弻涓嬫粦 闈濸C鏀跺叆鍗犳瘮杩�40%浣宠兘棣栨RF鈥滈ゼ骞测€濋暅澶碦F28mm F2.8 STM姝e紡鍙戝竷绱㈠凹鍙戝竷杞诲阀鍨嬪叏鏅0鍥為煶澹丠T-S2000 鍞环2990鍏�鐢ㄥ弸钁d簨闀垮吋CEO鐜嬫枃浜細鍏ㄩ潰鏁版櫤鍟嗕笟鍒涙柊鏃朵唬鍒版潵涓叴TECS浜戝钩鍙拌繛缁笁骞磋幏GlobalData Leader璇勭骇鍐呮牳鏁伴噺涓轰笟鐣屾渶楂橈紒Ampere鍙戝竷192鏍窤RM澶勭悊鍣�Gartner锛氳吘璁簯鑾稢PaaS銆丆RM澶氫釜璧涢亾鍥藉唴绗竴
您现在的位置:首页 >> 滚动 >> 正文
大数据时代的高速公路信息化
发表时间:2014年5月4日 18:16 来源:作者:钱民峰 责任编辑:编 辑:麒麟

近年来,“大数据”风靡一时,各行各业都在探讨“大数据”思维与技术在本行业的应用。高速公路是否可以应用“大数据”解决相关问题呢?

近期,由中国公路学会主办的第十六届中国高速公路信息化研讨会暨技术产品展示会在山东青岛召开,不少代表对大数据在交通运输行业的应用提出了自己的精彩见解。

公路海量数据潜在价值巨大

据了解,学界将大数据特点归纳为4个“V”,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。事实上,以前并非没有数据挖掘,而“大数据”理论则与传统的数据挖掘存在差异。

西安公路研究院姬建岗介绍说,传统数据挖掘采用的数学方法通常是找到一些自变量与因变量的关系,形成一个因变量与一系列自变量的因果关系,建立一个方程式,继而进行结果的计算。而“大数据”恰恰是对上述结果的逆向求解,即通过大量数据找到关联,再去寻找其中蕴含的关系式。大数据是“知其然而不必知其所以然”,外行通过大数据分析可以打败内行。

长安大学教授许宏科则介绍说,当数据取得时,可能是杂乱无章、看不出规律,但运用作图、造表、各种形式的方程拟合、计算某些特征量等手段便可找出数据的规律性。

高速公路营运数据量大,大数据分析大有可为,这成为了专家们的共识。据了解,江苏省高速公路2013年联网收费流水数据就达6.94亿条。在姬建岗看来,高速公路的数据可以分为收费数据、交通监控数据、指挥调度数据、日常运营数据。

此外,还有相关的第三方数据,例如公安交警数据、路政数据、地方道路数据、车辆维修点及周边医院数据等。这些数据体量大、类型多,足以支撑起行业应用大数据来解决相关问题。

数据挖掘可甄别逃费车辆

山东省交通运输厅高速公路收费结算中心徐清峻介绍了如何应用数据挖掘实现收费稽查的目的。据了解,山东省专门建设了一套稽查平台。该平台根据设定的算法,定期对全省联网收费数据集中进行逐条甄别,对于符合逃费特征的车辆进行标识和汇总,继而自动提醒相关部门和各收费站。

“算法很关键。”徐清峻分析说,看似正常的一条条车道业务流水,哪些车辆具有逃费嫌疑呢?单条流水自然无法判定,需要结合多条车道,但山东省高速公路每个月产生约五千万条的收费数据,海量的收费流水数据让人晕头转向。

为此,他们首先分析各种能够成功偷逃通行费的行为特征,继而构建能甄别这些数据的唯一算法,这样就能通过系统找出嫌疑车辆。当然最终确认仍需要通过现场验证。

与此类似,福建省高速公路监控中心主任王辉也介绍了数据挖掘在高速公路逃费稽查中的应用。据介绍,他们基于福建高速公路的网络特点及数据分布状况,研制了“高速公路逃费稽查电子辅助系统”,该系统于2013年11月通过了福建省交通运输厅组织的科技成果评审,获得专家们的高度评价。

“大数据”离不开“云计算”

近年来,与“大数据”一道,“云计算”也成为流行的热门词汇。

据了解,“云计算”是将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服务。在许宏科看来,“大数据”的应用需要“云计算”助力。

许宏科分析说,围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现,因此处理海量数据更加容易、更加便宜和迅速。大数据的处理技术正在改变目前的计算机运行模式,大数据的存储和管理要求,使得云数据库的建立成为必要条件。

[1]  [2]  
关于我们 | 联系我们 | 友情链接
新科技网络【京ICP备14006744号】
Copyright © 2014 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。