鐠猴拷閻炴稏鍎插﹢涓�2闁汇劌瀚幁顐f媴閹剧粯瀵㈤柍銉︽煛閳ь剚姊归崼锟犳嚊閿濆應鍋撳鍛樊闂佽姤顭終闁挎稑鑻妶浠嬪触閸涘﹥鏆柟闈涚С缁ㄣ劑宕℃繝鍌氼潬闁稿⿵鎷�鐠猴拷闁哄棙鍨垫禍锝夋嚃閻樺搫鍓柡鍕尭閸ゎ參姊婚鈧。浠嬫晬鐎圭挶fespace闁烩晛锕﹂弫鎾绘嚕鐏炶棄绨诲ù锝囧У婢э箓鏌呴悩韫樊閹兼潙鍢查妶浠嬪灳濠婂棗浜栭柍銉︾箖閳ь剨鎷�鐠猴拷濡絾鐗曢崹閬嶅箑瑜忛~鏍儘閺冣偓閸ㄦ岸寮稿⿰鎰獥闁告牗銇為崥顐も偓瑙勭箖閻忔岸鎮介悢鍝勨挅缂佷胶鍋熺划锟犳煀閸涘﹥鏆柛鐘插殫IE婵炲矁宕甸弸鐔煎极閸喓浜�鐠猴拷缂佸鍨甸鐔煎箮閵堝牆鈧粙寮ㄩ懡銈嗘闁挎稒宀稿▔锟�4闂佹彃绉垫慨銏ゆ嚃濠靛浂妲荤紒顕€鈧稓鑹惧☉鎾亾闂婎剦鍋嗗▓鎴﹀磻閵夈儳鏆旈梺顐㈠€风粭澶屸偓鐟扮秺閺佸﹥娼婚敓锟�鐠猴拷閻熸瑱缍侀弨锝夌叕椤愶絾缍忕紒鐙呯磿閹﹪寮弶鍟冾參宕濋崠锛勭獥lifespace閻忓繐绻楅幗鎴︽嚈閹殿喗鎶勯柣銏㈠枙瀵宕濋埡鈧紞妯尖偓鍦仧楠炲洨绮旈幋婵愬妳闂婎剦鍋呭ḿ妤冪不閿涘嫭鍊�鐠猴拷濠碘€冲€风紞宥囩矓閹存繍鍔呴梻鍕Х椤㈠懘鎳橀崒锔惧惞濞戞挾绮晶锔藉緞閳哄啫濮ч柟瀛樺姇閸ㄥ酣鎯冮崟顔肩亰闁谎勫劤閻g偟鐥€圭姷婀哥紒淇卞灪濞叉悂鎳楃捄鐑樻妱濞存粌妫滆濞戞搫鎷�鐠猴拷闁哄嫬妫滈崥妯荤▔椤撶偞绂囬悹褍鍚€缁楁繂鈽夊☉宕囩獥缁惧彞绀侀悽顐﹀及椤栨艾鏋庨柡浣哄瀹撲線鎯冮崟顒佷粯濞达絽鍟块悺銊╁磼閵娿倗鐭欓悹鎰舵嫹鐠猴拷濠碘€冲€风紞宥嗘櫠閻愭彃绻侀柛蹇撶Ф閺屽懘宕濆☉宕囧惞婵箍鍊涢崵鏇㈠磹瀹ュ懍娣柧鏂款儑濞呇呭垝婢跺ǹ鍋ㄩ柦鈧妷銉ユ倠闁哄鍎埀顒佺矊婵亪寮ㄩ悜鈹惧亾閿燂拷鐠猴拷Canalys閻犲鍟伴悥娲晬濮橆偉鍘柛銉﹀灊缁辨帗绋夊顒夊殸濞存粌绨肩粭鍌涚閹寸姵鐣遍梻鍥e亾婵懓鍊风划娑㈡倿閺堢數绉甸弶鈺嬫嫹鐠猴拷濠⒀呭仜缁犳瑧鎼鹃敓锟�30% 闁告绨肩拹鐔哥▔婵犲懐娈�2023闁归潧顑嗗┃鈧柛鎴︾細閹伙綁鏌岃箛姘4000濞戞挸娲崕锟�鐠猴拷缂佹劒鑳堕悧顒佸緞濮樿翰鈧秹鏌屽鍥т化闁瑰灈鍋撻柡鍫嫹 婵炴惌浜濋悿鍡涘矗閹存繄顏撮柛蹇嬪妽閺屽﹦绮诲Δ鈧慨蹇曠磾閹寸姷鎹曢柟鍨С缂嶆梻鍖栭懡銈囧煚鐠猴拷闁煎浜濋崹婊堟儑鐎n厸鈧粓鏁嶉悢璇差伕闁哄绮岄妵鍥嵁閸涱厼顤€闁告垵绮癛濠㈣泛鐡ㄥΟ澶愭煥閳ь剟宕鐐獥闁哄秴娲╅崵锟�15濞戞挸娲よぐ锟�鐠猴拷闁告绨肩拹鐔哥閹寸儐鍔€鐎殿喖绻愯ぐ鍌滄暜閸愨晜鐓€濞戞挴鍋撳ù鐙呯秬閸ゆ粓鎯嶉弬鍨€婚悽顖氬暙缁憋繝寮悧鍫濈ウ閹煎瓨寮竌ussDB鐠猴拷闁稿繈鍔庨幃鍡欑箔椤戣法顏遍悗纭咁啇缁辨帗绋夋径瀣昋D-OLED闁煎墽貌antone闁告瑥鐭佹竟濠呫亹閳哄倹缍€濠电偘娴囬鑽ゆ嫚閿燂拷鐠猴拷婵炴潙顑呯紙閬嶆煀濮濆瞼妲哥紒鎯ф啞閳ь剙绨肩粻鐐烘偨閿燂拷鐠猴拷3999闁稿繐鍟抽幑锝夋晬娴g懓顫戦柛娆戝Т閻棝骞嶇€n偅绨歮oto razr 40缂侇垵顕ч崹顏勵潰閿濆懐纭€闁告瑦鍨电粩锟�鐠猴拷閻犳劗顣槐鎺旀閵忕姴鍤柟鎭掑妼閸ょ挆OUGH濞戞挸顦靛Σ绫咶express Type A閻庢稒锚閸嬪秹宕¢敓锟�鐠猴拷闁告绨肩拹鐔奉潰閿濆懐纭€闁告瑦鍨电粩鐑藉疾閾忓湱鏆嗛柛蹇嬪妼閸樻粓鎳曢弮鈧敮鎾箣濡吋娈i柛娆欐嫹6婵炲棝绠栭崳鍝ュ閸涱喗鐓€闁告繐鎷�鐠猴拷闁艰鲸鏌ㄨぐ鍌滅矓閹达絾鍣eù婊冾儔閺嗛亶鎷曢埄鍐╊潠濞寸姴顑戠槐鐗堬紣閸曨噮鍚€闁归潧顑嗗┃鈧☉鎾磋壘婵喖寮甸鍛檷濞戞挶鍊曢崟鐐濮橆剦鏉婚梻鈧敓锟�鐠猴拷婵炴潙顑呯紙閬嶆煀濮濆瞼妲哥紒鎯ф啞閳ь剙绨肩粻鐐烘偨閿燂拷鐠猴拷闁煎灚宕橀鍡樼閹辨亯geOne闁稿繈鍎甸埀顒€顢媋rtner DDoS缂傚倹鎹佽闁哄倽顫夐、宥囨暜閸屾碍绨氶柟绋挎搐瀹曪拷鐠猴拷闁告绨肩拹鐑礳eanStor Pacific闁告帒妫楃粩宄邦嚕韫囨挾鎽犻柛灞诲姀楠炲粩O500婵帗绮庨鍥ㄧ▔閳э拷鐠猴拷閻忓繐绻掗懗宀勫矗閹存繄顏�2023妤犵偟绻濈粩瀵糕偓娑崇到鐎瑰磭鎷归姀鈥承撻柨娑欑婢瑰嫭绂嶈箛搴ょ闁烩晛鐗炵槐婵嬪礆閳哄倿绱熷☉鎾筹攻鐎癸拷鐠猴拷闁艰鲸姊归崗鍌涚▔婵犱胶顏遍悹鎰╁灩閸曢箖鎷冮妷锔芥毆闁告巻鏅滄Η搴ㄥ矗鐏炶棄钃熷☉鎾愁儐缁拷 闂傚牊鎵汣闁衡偓鐠哄搫寮抽柛妤冨У閻︻喗娼婚敓锟�40%鐠猴拷濞达絽鐤囬崗妯伙純閺嶎煈鍎F闁炽儲绮撻妶濂哥嵁濞村鍋撳┑瀣當濠㈠墎鈪礔28mm F2.8 STM婵繐绲界槐锟犲矗閹存繄顏�鐠猴拷缂佷究鍨归崙褰掑矗閹存繄顏撮弶鐐额嚙闂冣偓闁搞劌顑呴崣蹇涘疾椤栨熬绱i柛銉у仱閻撹埖绔熸稉鐕�-S2000 闁哥儐鍠曢悳锟�2990闁稿骏鎷�鐠猴拷闁烩偓鍔屽鎼佹媼閿濆嫮鐨戦梻鈧崹顔兼倯CEO闁绘粌顑嗛弸鍐╃椤掑﹦绐楅柛蹇嬪姂濞间即寮悧鍫燁仭闁哥喎妫旂粭鐔煎礆濞戞瑦鐓€闁哄啯婀归崬顒勫礆閻楀牊闄�鐠猴拷濞戞搩鍘奸崣纰〦CS濞存粍鍨甸柦鈺呭矗閹峰瞼绠剧紓渚囧幒缁椾線鐛壕瀣GlobalData Leader閻犲洤瀚锟�鐠猴拷闁告劕鎳忛悧鎶藉极娴兼潙娅ゅ☉鎾规〃缁楃喖鎮剧仦鐐粯濡ゅ倹锕槐鎵恗pere闁告瑦鍨电粩锟�192闁哄秶顎僐M濠㈣泛瀚幃濠囧闯閿燂拷鐠猴拷Gartner闁挎稒淇洪崥妯兼媼椤栨瑧闅橀柤鍓aaS闁靛棔绔糝M濠㈣埖鐭柌婊呮導濞戭澀澹曢柛銉ㄦ閸炲绮璺伇
您现在的位置:首页 >> 滚动 >> 正文
聚划算:大数据开发获利模式的成功
发表时间:2014年5月5日 18:08 来源:环球企业家杂志 责任编辑:编 辑:麒麟


在聚划算“量贩团”开团三天,威露士一举售出4.2万份,这个成绩相当于一家大型超市半年的销售量;而一箱4大瓶规格的潘婷洗发水限量销售1万套,开团当天下午即告售罄,销售额一举达到148万元;6提18包维达抽纸,十几小时便售出整整3万套……

这是阿里量贩团打造的“爆款模型”计算出热卖商品的销售成绩,量贩团则是阿里巴巴(滚动资讯)利用大数据开发获利模式的最新方式。不仅如此,量贩团的推出更是基于数据趋势。

当时,2013年第1季度数据显示大型零售卖场的快消品销量增速放缓,消费者大批转向低价的互联网渠道购买。前任聚划算总裁张建锋敏锐地抓住这一消费趋势,与恒安纸业、宝洁(81.92, -0.42, -0.51%)等厂商合作,并改用“箱”为购买单位向消费者提供小额批发,相应的,商品价格大幅下降至批发价,销量大幅增长。

随着聚划算一次次刷新记录,向聚划算提交报名的商家也随之暴增,2012年起,从原本每天80团猛增到300团。今年3月,已调任淘宝和手机淘宝担任负责人的张建锋曾明确表示:“不能增加新团,(这样)单团产品销售量会下降,这是生死线。”之后聚划算每天团购数量控制在200团。

海量报名者与有限资源相矛盾,自然带来人工审核的效率困扰,甚至阿里巴巴12人的审核“小二”团队,须面对每天2万余件待审商品,平均每件审核耗时仅3分钟至4分钟。过程漫长不说,最终选出商品能否卖得爆,全凭审核小二们的个人经验,“必然很多细节被忽略了”,亦曾爆出小二受贿等丑闻。

爆款模型

聚划算大数据模式的成败取决于每一单的细节把控,即200多团“坑位”实现最高单位产出。“卖爆”对于聚划算平台和商家来说都是至关重要。选出的商品是否具有“爆款”潜质,直接意味着单日数十万元销售额的差距。商家无不希望通过冲爆款进而获得更优的搜索排序以及同店关联销售等。

为此除了销售额分成之外,商家还需支付“坑位费”,赢得每日有限的坑位竞拍。

电子商务观察员鲁振旺表示,“现在坑位费过高,商家必须考虑投入产出,对商品销售做合理的预测。”

诚如张建锋所言,“聚划算是规模销售和营销的平台。”其本身没有商品,从淘宝和天猫中选出商品,然后把它卖爆。聚划算前任总经理张宇曾总结,聚划算是“大电子商务的堆头(指超市中单独陈列的商品)”。唯有爆款销量才能回馈大流量,承担好如大卖场促销“堆头”的角色。

2013年上半年,聚划算团队找到杨滔,当时他是阿里巴巴集团商业智能部数据科学团队的唯一成员,希望用大数据挖掘和分析解决聚划算的核心问题—选品。

杨滔在新西兰奥克兰大学获得机器学习方向博士学位,将其招进阿里的是阿里集团数据委员会会长、商业智能部负责人车品觉。马云今年年初的致员工信中,提出“以控制为出发点的IT时代正在走向激活生产力为目的DT(data technology)数据时代”。车品觉及其商业智能部团队是支撑阿里数据时代的三大支柱之一。另两大支柱分别是“阿里云”和新独立的“数据平台事业部”,其扮演基础性存储和运算平台角色,车品觉的任务是将海量大数据真正运用起来,通过大数据推测未来、引导决策。车品觉告诉《环球企业家》,“是否能预测趋势”是企业由传统BI(商业智能)领域跃入“大数据时代”的关键一步。

而面对阿里巴巴旗下众多业务产品,到底用哪个“练兵”大数据呢?“如果一开始选不好或者思路不对,那么做了也是白做。”高级数据挖掘专家杨滔告诉《环球企业家》,“一开始选项目便需要靠商业感觉和判断。”车品觉和杨滔定下标准为,一看其商业意义大小,二看是否与机器学习的思路匹配,即利用数据帮助人提升效率、对细节实现规模化把控。

[1]  [2]  [3]  
关于我们 | 联系我们 | 友情链接
新科技网络【京ICP备14006744号】
Copyright © 2014 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。