琛ユ湁K2鐨勬恫浣撻挋鈥斺€旀堡鑷e€嶅仴閽橠K锛屽ソ鍚告敹鎵嶄簨鍗婂姛鍊�鏆戝亣鑲犺儍鏄撳嚭闂锛宭ifespace鐩婄敓鑿屽府浣犳墦閫犲仴搴峰ソ鈥滆偁鈥濇€�棣栧垱鎬х鐮旀垚鏋滐細鍖椾含瀹濇灚鐢熺墿绁炵粡閰告敼鍠凥IE娌荤枟鏁堟灉绉戝鎶よ倽鏀荤暐锛氶泦4閲嶆姢鑲濇绮逛簬涓€韬殑鍋ュ畨閫備笉瀹归敊杩�瑙i攣韬潗绠$悊鏂板Э鍔匡細lifespace灏忚摑鑵扮泭鐢熻弻鍔╀綘瀹炵幇绉戝韬潗绠$悊濡備綍绉戝闄嶈鑴傦紵涓绘墦澶╃劧鎴愬垎鐨勮垝鐧惧畞绾宠眴绾㈡洸鑳跺泭浜嗚В涓�鏄嗚吘涓浗璧典笝娑涳細纾佸甫鏄喎鏁版嵁鐨勬渶浣冲瓨鍌ㄤ粙璐�濡備綍澧炲己鍏嶇柅鍔涳紵姹よ嚕鍊嶅仴铔嬬櫧绮夊ソ钀ュ吇鏉モ€滃姪鏀烩€�Canalys璋冪爺锛氫腑鍥戒紒涓氬浜庝笂浜戠殑闇€姹備粛鐒朵綆杩�澧炲箙瓒�30% 鍗庝负涓婅皟2023鎵嬫満鍑鸿揣閲忚嚦4000涓囬儴绐佺牬澶氶」閲嶇偣鎶€鏈� 娴疆鍙戝竷鍏ㄦ柊绠楀姏缃戠粶鎿嶄綔绯荤粺鑷垜鐪嬭“锛熻嫻鏋滃ぇ骞呭墛鍑廙R澶存樉閿€鍞洰鏍囪嚦15涓囧彴鍗庝负浜戞寮忓彂甯冩柊涓€浠h嚜鐮斿垎甯冨紡鏁版嵁搴揋aussDB鍏ㄧ悆绗竴瀹讹紒涓夋槦QD-OLED鑾稰antone鍙岃壊褰╂潈濞佽璇�娴嬪翱閰歌瘯绾告€庝箞鐢�3999鍏冭捣锛佹姌鍙犲睆鎵嬫満moto razr 40绯诲垪姝e紡鍙戝竷璐碉紒绱㈠凹鎺ㄥ嚭TOUGH涓夐槻CFexpress Type A瀛樺偍鍗�鍗庝负姝e紡鍙戝竷鏅虹畝鍏ㄥ厜鑱旀帴鎴樼暐鍙�6娆鹃噸纾呮柊鍝�鑱斿彂绉戣懀浜嬮暱钄℃槑浠嬶細棰勮鎵嬫満涓氬姟鏈潵涓ゅ勾浼氬闀�娴嬪翱閰歌瘯绾告€庝箞鐢�鑵捐浜慐dgeOne鍏ラ€塆artner DDoS缂撹В鏂规甯傚満鎸囧崡鍗庝负OceanStor Pacific鍒嗗竷寮忓瓨鍌ㄨ幏IO500姒滅涓€灏忕背鍙戝竷2023骞翠竴瀛e害璐㈡姤锛氭壄浜忎负鐩堬紝鍒╂鼎涓婃定鑱旀兂涓婁竴璐㈠勾钀ユ敹鍒╂鼎鍙屽弻涓嬫粦 闈濸C鏀跺叆鍗犳瘮杩�40%浣宠兘棣栨RF鈥滈ゼ骞测€濋暅澶碦F28mm F2.8 STM姝e紡鍙戝竷绱㈠凹鍙戝竷杞诲阀鍨嬪叏鏅0鍥為煶澹丠T-S2000 鍞环2990鍏�鐢ㄥ弸钁d簨闀垮吋CEO鐜嬫枃浜細鍏ㄩ潰鏁版櫤鍟嗕笟鍒涙柊鏃朵唬鍒版潵涓叴TECS浜戝钩鍙拌繛缁笁骞磋幏GlobalData Leader璇勭骇鍐呮牳鏁伴噺涓轰笟鐣屾渶楂橈紒Ampere鍙戝竷192鏍窤RM澶勭悊鍣�Gartner锛氳吘璁簯鑾稢PaaS銆丆RM澶氫釜璧涢亾鍥藉唴绗竴
您现在的位置:首页 >> 新•资讯 >> 正文
天弘基金大数据中心处理能力百亿级,分分钟计算海量数据
发表时间:2014年7月11日 16:29 来源:新科技 责任编辑:编 辑:麒麟

随着互联网浪潮的来袭,大数据正在以不可阻拦的磅礴气势,与当代同样具有革命意义的最新科技进步,如纳米技术、生物工程、物联网等一起,揭开人类新世纪的序幕。在各个行业,大数据均被多次提及,但往往这些大数据还有些“像雾像雨又像风”的感觉,老百姓从中很难体验到“大数据”的内涵,而天弘基金让投资者对大数据的梦想照进了现实,近日其以趣味图说的形式绘制了《余额宝运行一周年数据报告》,针对余额宝1亿多用户的年龄、客单量、地域、使用习惯、交易频率等数据信息,天弘基金通过多个维度以生动、活泼的内容向公众展示了“大数据”的真实魅力。

业内人士告诉记者,一般的企业数据系统采用传统的IOE架构,处理数据量级为千万级,能处理上亿级的数据就不错了,10亿级别对一般企业来说都很难想象,处理时间更是无法保障,而天弘基金大数据中心可以做到百亿级数据的处理,且分分钟就能计算海量数据。

所谓IOE,IBM是服务器提供商,Oracle是数据库软件提供商,EMC则是存储设备提供商,三者构成了一个从软件到硬件的企业数据库系统。由这三驾马车构成的数据库系统几乎占领了全球大部分商用数据库系统市场份额,石油、金融行业也广泛地使用这套系统,价格昂贵。而天弘基金云直销系统去年9月份投入使用,成为首个去IOE的金融案例,今年天弘基金建立的大数据中心,也成功上云。

天弘基金大数据中心主管周卫国告诉记者,截至5月26日那天,我们《余额宝一周年大数据报告》分析应用的基础数据有53亿条,基础数据维度15个,而这15个维护又包含各种排列组合的交叉分析,简单的比如地域和年龄的交叉分析、性别的交易频率的交叉分析,复杂的会涉及许多复杂的模型,因此本次分析应用的基础数据达到96亿条,数据维度35个。正是因为天弘基金大数据中心有百亿级以上的数据处理能力,因此我们有能力去做更多复杂的模型,发散思维,从更多的角度去分析这些海量数据,以达到最真实地分析出客户行为路径,并对业务给予指导。

比如在对“客户流失”这个专题的分析上,我们除了看简单的客户转出金额、转出次数、周/月度的行为规律、提现和消费占比等等基础数据,还专门建立了一个客户流失LOGIT模型,单这一个模型便使用17个指标变量,包含1个目标变量和16个候选输入变量,使用数据有效记录数9.6亿个,在ODPS上,利用MKW LOGIT工具运行模型运行一次,约需27分钟。

这样的模型还有多个,从不同角度挖掘、分析,有时候还会用到人口学、社会学、心理学等知识,客户是在生活中鲜活的个体,想要刻画真实的全景图,既需要海量数据的分析处理,也需要科学的方法去定义一些模型。基于鲜活个体的全样本“大数据”,服务于基金投资和业务开展是我们不断努力的方向。

大数据分析,带来的流动性预测功能,已成为助力余额宝投资的绝门利器,而大数据带来的图说,同样精彩绝伦。从7月7日起,《余额宝运行一周年大数据报告》系列图说以每日一幅的速度,陆续在“天弘基金”官方微博披露,精彩还将继续。

关于我们 | 联系我们 | 友情链接
新科技网络【京ICP备14006744号】
Copyright © 2014 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。