琛ユ湁K2鐨勬恫浣撻挋鈥斺€旀堡鑷e€嶅仴閽橠K锛屽ソ鍚告敹鎵嶄簨鍗婂姛鍊�鏆戝亣鑲犺儍鏄撳嚭闂锛宭ifespace鐩婄敓鑿屽府浣犳墦閫犲仴搴峰ソ鈥滆偁鈥濇€�棣栧垱鎬х鐮旀垚鏋滐細鍖椾含瀹濇灚鐢熺墿绁炵粡閰告敼鍠凥IE娌荤枟鏁堟灉绉戝鎶よ倽鏀荤暐锛氶泦4閲嶆姢鑲濇绮逛簬涓€韬殑鍋ュ畨閫備笉瀹归敊杩�瑙i攣韬潗绠$悊鏂板Э鍔匡細lifespace灏忚摑鑵扮泭鐢熻弻鍔╀綘瀹炵幇绉戝韬潗绠$悊濡備綍绉戝闄嶈鑴傦紵涓绘墦澶╃劧鎴愬垎鐨勮垝鐧惧畞绾宠眴绾㈡洸鑳跺泭浜嗚В涓�鏄嗚吘涓浗璧典笝娑涳細纾佸甫鏄喎鏁版嵁鐨勬渶浣冲瓨鍌ㄤ粙璐�濡備綍澧炲己鍏嶇柅鍔涳紵姹よ嚕鍊嶅仴铔嬬櫧绮夊ソ钀ュ吇鏉モ€滃姪鏀烩€�Canalys璋冪爺锛氫腑鍥戒紒涓氬浜庝笂浜戠殑闇€姹備粛鐒朵綆杩�澧炲箙瓒�30% 鍗庝负涓婅皟2023鎵嬫満鍑鸿揣閲忚嚦4000涓囬儴绐佺牬澶氶」閲嶇偣鎶€鏈� 娴疆鍙戝竷鍏ㄦ柊绠楀姏缃戠粶鎿嶄綔绯荤粺鑷垜鐪嬭“锛熻嫻鏋滃ぇ骞呭墛鍑廙R澶存樉閿€鍞洰鏍囪嚦15涓囧彴鍗庝负浜戞寮忓彂甯冩柊涓€浠h嚜鐮斿垎甯冨紡鏁版嵁搴揋aussDB鍏ㄧ悆绗竴瀹讹紒涓夋槦QD-OLED鑾稰antone鍙岃壊褰╂潈濞佽璇�娴嬪翱閰歌瘯绾告€庝箞鐢�3999鍏冭捣锛佹姌鍙犲睆鎵嬫満moto razr 40绯诲垪姝e紡鍙戝竷璐碉紒绱㈠凹鎺ㄥ嚭TOUGH涓夐槻CFexpress Type A瀛樺偍鍗�鍗庝负姝e紡鍙戝竷鏅虹畝鍏ㄥ厜鑱旀帴鎴樼暐鍙�6娆鹃噸纾呮柊鍝�鑱斿彂绉戣懀浜嬮暱钄℃槑浠嬶細棰勮鎵嬫満涓氬姟鏈潵涓ゅ勾浼氬闀�娴嬪翱閰歌瘯绾告€庝箞鐢�鑵捐浜慐dgeOne鍏ラ€塆artner DDoS缂撹В鏂规甯傚満鎸囧崡鍗庝负OceanStor Pacific鍒嗗竷寮忓瓨鍌ㄨ幏IO500姒滅涓€灏忕背鍙戝竷2023骞翠竴瀛e害璐㈡姤锛氭壄浜忎负鐩堬紝鍒╂鼎涓婃定鑱旀兂涓婁竴璐㈠勾钀ユ敹鍒╂鼎鍙屽弻涓嬫粦 闈濸C鏀跺叆鍗犳瘮杩�40%浣宠兘棣栨RF鈥滈ゼ骞测€濋暅澶碦F28mm F2.8 STM姝e紡鍙戝竷绱㈠凹鍙戝竷杞诲阀鍨嬪叏鏅0鍥為煶澹丠T-S2000 鍞环2990鍏�鐢ㄥ弸钁d簨闀垮吋CEO鐜嬫枃浜細鍏ㄩ潰鏁版櫤鍟嗕笟鍒涙柊鏃朵唬鍒版潵涓叴TECS浜戝钩鍙拌繛缁笁骞磋幏GlobalData Leader璇勭骇鍐呮牳鏁伴噺涓轰笟鐣屾渶楂橈紒Ampere鍙戝竷192鏍窤RM澶勭悊鍣�Gartner锛氳吘璁簯鑾稢PaaS銆丆RM澶氫釜璧涢亾鍥藉唴绗竴
您现在的位置:首页 >> 新•资讯 >> 正文
模糊图像变高清人工智能只需几毫秒
发表时间:2018年7月12日 09:24 来源:网易科技 责任编辑:编 辑:麒麟

照片光线不是很好?不用担心,人工智能软件可以帮你解决。

据国外媒体报道,来自英伟达(Nvidia)、芬兰阿尔托大学(Aalto University)和美国麻省理工大学(Massachusetts Institute of Technology)的计算机科学家们训练了一种神经网络,可以恢复被噪声破坏的图像,在数毫秒内将模糊图像变得清晰。虽然计算机视觉算法已经被用于改善像Googel Pixel 2和iPhoneX这样的智能手机拍摄的照片,但此项技术却更进一步。

这项新技术的训练过程与谷歌和苹果等公司训练手机软件清理图片的方式略有不同。

这款名为noise2noise的新模型无需查看大量高分辨率样本示例就可以学习图像清晰化。

“我们将基本的统计推理应用于通过机器学习进行信号重建的过程中,学习将被损坏的观察值映射到一个干净的信号上,我们得出了一个简单而有力的结论: 在一些常见情况下,未观察原始干净的信号就学会恢复信号是有可能的。”研究者们在发表论文的摘要中如此写道。

这项技术的理论基础有点令人费解,传统技术更多的是通过估计低分辨率和高分辨率图像对之间的像素值差异来最小化损失函数。

像素可以采用多种值来重建更清晰的图像,经过训练,神经网络学会了将这些值平均化。在对成对的损坏图像进行训练时,如果这两幅图像的像素值差异与清晰的和模糊的图像之间差异相似,同样的方法也适用。

“这意味着,原则上,我们可以用零均值噪声破坏神经网络的训练样本,而不改变神经网络的学习内容。”

模型训练

研究小组使用从ImageNet数据集中抽取的5万张图像进行了noise2noise模型的训练,并为每张图像添加了随机噪声分布。系统必须估计图像中噪声的大小并将其移除。

该系统在三个图像数据集中进行了测试,这些数据集包括了建筑物图像、人像以及医疗共振成像图。

然而,这个模型并不能纠正所有的缺陷。它不能将图像中镜框外的物体拉回,也不能重新定位照片获得最佳角度。但是当缺乏具有足够高分辨率的图像来进行样本训练时,这项技术就非常有用了。

“现实情况中有时很难获得的干净的训练数据,比如:低光摄影、基于物理规则的渲染(BPR)以及磁共振成像,”研究小组说,“对这一想法的验证,使我们不用再费力收集干净数据,就可以获得将此技术应用在此类情景中的潜在巨大收益。当然,世界上没有免费的午餐——我们无法获取输入数据中不存在的特性——但这项技术也适用于有明确目标的训练。”

这项研究的成果将于本周在瑞典举行的国际机器学习大会上得到展示。

相关文章
关于我们 | 联系我们 | 友情链接 | 版权声明
新科技网络【京ICP备15027068号】
Copyright © 2015 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。