随着时间的脚步已经步入到 2018 年,智能手机市场也迎来了一些新的改变,其中比较关键的两个因素分别是全面屏和 AI。就全面屏而言,它已经进入到快速普及阶段并伴随着一些千元机等产品进入中低端市场;但是对于科技含金量更高的 AI 来说,若想真正地在智能手机行业广泛发挥自己的力量,还需要产业链整体上下游整合更多的时间和努力。
不过,就目前的行业现状而言,智能手机行业已经初步形成了一股全面拥抱 AI 的趋势,而真正全面推动这一趋势发展的,正是从产业链最上游的——高通。对于高通而言,如何和终端厂商厂商将AI最后一公里递到消费者手里,是整体行业都在思考的问题。
智能手机 AI 的到来
与人们肉眼可见的全面屏相比,智能手机与 AI 的关系复杂得多。
2011 年,苹果在当年的 iOS 5 上搭载了可以与之进行语音交互的 Siri 语音助手,从某种意义上来说,这已经是 AI 走向智能手机的前奏。可惜此后数年,无论是 Siri 自己,还是其他厂商的类似产品,都没能给智能手机顺利打上 AI 的标签,即使强悍如 Google Assistant,也不能例外。 究竟是在手机上使用云端AI还是终端侧AI,则是产业也在考虑思考的问题。
一直到 2017 年,当智能手机第一次以芯片的方式在硬件层面与 AI 握手,整个行业才蓦然认识到,原来 AI 已经真正来到了智能手机上。
2017 年 9 月 2 日下午,华为在德国柏林消费电子展发布了麒麟 970 芯片;为了配合这种【手机未发,芯片先行】的做法,华为将这款芯片定义为【全球首款智能手机移动端 AI 芯片】。具体来说,麒麟 970 搭载了一款 NPU(Neural-network Processing Unit,神经网络处理单元),其亮点在于处理特定任务时比 CPU 等模块出色得多,比如在图片识别任务中。
不过,从搭载麒麟 970 的华为 Mate 10 的具体表现来看,除了在拍照上的场景识别和成像增强,AI 芯片并没有给华为 Mate 10 带来什么具体的实用功能;而系统流畅度这样的改善也是隐性的,难以感知的。而且麒麟 970 的另一个根本问题在于它的 NPU 模块并非是独立研发;当然,麒麟 970 在驱动、BSP、内存机制等方面做了很多工作,但它终究是一款拿来主义的产品。
更重要的是对于芯片设计,各家厂商的思路不同。众所周知,一款芯片产品设计一般需要距离其商用提前 18 个月进行设计。而单独搭载NPU的设计方式相当于需要提前 18 个月预测商用市场可能用到的使用场景,而在日新月异的智能手机市场而言,只能说满足部分需求,毕竟没人能够知晓 18 个月后的商用市场中 AI 又有什么新玩法。
严格意义上来说,给麒麟 970 带上全球首款智能手机 AI 芯片的帽子,是华为博取眼球的讨巧做法。在 9 月中旬的苹果发布会上,苹果发布了新一代 iPhone 和其所内置的 A11 Bionic。A11 Bionic 内置了苹果自主研发的双核架构 Neural Engine(神经网络处理引擎),它每秒处理相应神经网络计算需求的次数可达 6000 亿次。
然而,苹果的强大之处在于,它不仅仅自主研发出了一颗强大的 AI 芯片,还在芯片的基础之上开发出一系列重磅而实用的功能。以 iPhone X 为例,其与 Neural Engine 直接相关的功能体现在: Face ID 通过面部特征解锁; Animoji 通过追踪人的面部表情来实时创作动画表情; 人像模式可以创造出能够生动变化的光效 Portrait Lighting。