璺�鐞涖儲婀並2閻ㄥ嫭鎭担鎾绘寢閳ユ柡鈧梹鍫¢懛锝呪偓宥呬淮闁芥K閿涘苯銈介崥鍛婃暪閹靛秳绨ㄩ崡濠傚閸婏拷璺�閺嗘垵浜i懖鐘哄剭閺勬挸鍤梻顕€顣介敍瀹璱fespace閻╁﹦鏁撻懣灞藉簻娴g姵澧﹂柅鐘蹭淮鎼村嘲銈介垾婊嗗亖閳ユ繃鈧拷璺�妫f牕鍨遍幀褏顫栭惍鏃€鍨氶弸婊愮窗閸栨ぞ鍚€规繃鐏氶悽鐔哄⒖缁佺偟绮¢柊鍛婃暭閸犲嚗IE濞岃崵鏋熼弫鍫熺亯璺�缁夋垵顒熼幎銈堝€介弨鑽ゆ殣閿涙岸娉�4闁插秵濮㈤懖婵囶槻缁€涚艾娑撯偓闊偆娈戦崑銉ョ暔闁倷绗夌€瑰綊鏁婃潻锟�璺�鐟欙綁鏀i煬顐f綏缁狅紕鎮婇弬鏉啃崝鍖$窗lifespace鐏忓繗鎽戦懙鎵抄閻㈢喕寮婚崝鈺€缍樼€圭偟骞囩粔鎴濐劅闊偅娼楃粻锛勬倞璺�婵″倷缍嶇粔鎴濐劅闂勫秷顢呴懘鍌︾吹娑撶粯澧︽径鈺冨姧閹存劕鍨庨惃鍕灊閻ф儳鐣炵痪瀹犵湸缁俱垺娲搁懗璺烘抄娴滃棜袙娑擄拷璺�閺勫棜鍚樻稉顓炴禇鐠у吀绗濆☉娑崇窗绾句礁鐢弰顖氬枎閺佺増宓侀惃鍕付娴e啿鐡ㄩ崒銊ょ矙鐠愶拷璺�婵″倷缍嶆晶鐐插繁閸忓秶鏌呴崝娑崇吹濮广倛鍤曢崐宥呬淮閾斿娅х划澶娿偨閽€銉ュ悋閺夈儮鈧粌濮弨鐑┾偓锟�璺�Canalys鐠嬪啰鐖洪敍姘厬閸ユ垝绱掓稉姘嚠娴滃簼绗傛禍鎴犳畱闂団偓濮瑰倷绮涢悞鏈电秵鏉╋拷璺�婢х偛绠欑搾锟�30% 閸楀簼璐熸稉濠呯殶2023閹靛婧€閸戦缚鎻i柌蹇氬殾4000娑撳洭鍎�璺�缁愪胶鐗径姘躲€嶉柌宥囧仯閹垛偓閺堬拷 濞搭亝鐤嗛崣鎴濈閸忋劍鏌婄粻妤€濮忕純鎴犵捕閹垮秳缍旂化鑽ょ埠璺�閼奉亝鍨滈惇瀣€滈敍鐔诲閺嬫粌銇囬獮鍛閸戝粰R婢跺瓨妯夐柨鈧崬顔炬窗閺嶅洩鍤�15娑撳洤褰�璺�閸楀簼璐熸禍鎴烆劀瀵繐褰傜敮鍐╂煀娑撯偓娴狅綀鍤滈惍鏂垮瀻鐢啫绱¢弫鐗堝祦鎼存弸aussDB璺�閸忋劎鎮嗙粭顑跨鐎硅绱掓稉澶嬫ЕQD-OLED閼剧òantone閸欏矁澹婅ぐ鈺傛綀婵炰浇顓荤拠锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�3999閸忓啳鎹i敍浣瑰閸欑姴鐫嗛幍瀣簚moto razr 40缁鍨锝呯础閸欐垵绔�璺�鐠愮绱掔槐銏犲嚬閹恒劌鍤璗OUGH娑撳妲籆Fexpress Type A鐎涙ê鍋嶉崡锟�璺�閸楀簼璐熷锝呯础閸欐垵绔烽弲铏圭暆閸忋劌鍘滈懕鏃€甯撮幋妯兼殣閸欙拷6濞嗛箖鍣哥壕鍛煀閸濓拷璺�閼辨柨褰傜粔鎴f噣娴滃鏆遍拕鈩冩娴犲绱版0鍕吀閹靛婧€娑撴艾濮熼張顏呮降娑撱倕鍕炬导姘杻闂€锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�閼垫崘顔嗘禍鎱恉geOne閸忋儵鈧artner DDoS缂傛捁袙閺傝顢嶇敮鍌氭簚閹稿洤宕�璺�閸楀簼璐烵ceanStor Pacific閸掑棗绔峰蹇撶摠閸屻劏骞廔O500濮掓粎顑囨稉鈧�璺�鐏忓繒鑳岄崣鎴濈2023楠炵繝绔寸€涳絽瀹崇拹銏″Г閿涙碍澹勬禍蹇庤礋閻╁牞绱濋崚鈺傞紟娑撳﹥瀹�璺�閼辨梹鍏傛稉濠佺鐠愩垹鍕鹃拃銉︽暪閸掆晜榧庨崣灞藉蓟娑撳绮� 闂堟扛C閺€璺哄弳閸楃姵鐦潻锟�40%璺�娴e疇鍏樻#鏍儥RF閳ユ粓銈奸獮娴嬧偓婵嬫殔婢剁ⅵF28mm F2.8 STM濮濓絽绱¢崣鎴濈璺�缁便垹鍑归崣鎴濈鏉炶闃€閸ㄥ鍙忛弲顖氾紣閸ョ偤鐓舵竟涓燭-S2000 閸烆喕鐜�2990閸忥拷璺�閻€劌寮搁拋锝勭皑闂€鍨悑CEO閻滃鏋冩禍顒婄窗閸忋劑娼伴弫鐗堟閸熷棔绗熼崚娑欐煀閺冩湹鍞崚鐗堟降璺�娑擃厼鍙碩ECS娴滄垵閽╅崣鎷岀箾缂侇厺绗侀獮纾嬪箯GlobalData Leader鐠囧嫮楠�璺�閸愬懏鐗抽弫浼村櫤娑撹桨绗熼悾灞炬付妤傛﹫绱扐mpere閸欐垵绔�192閺嶇RM婢跺嫮鎮婇崳锟�璺�Gartner閿涙俺鍚樼拋顖欑隘閼剧áPaaS閵嗕竼RM婢舵矮閲滅挧娑壕閸ヨ棄鍞寸粭顑跨
您现在的位置:首页 >> 新•资讯 >> 正文
人工智能时代该如何夺回我们的“不知情权”
发表时间:2018年7月5日 12:27 来源:新浪科技 责任编辑:编 辑:麒麟

心理学家拉尔夫·赫特维格(Ralph Hertwig)和法律学者克里斯托弗·恩格尔(Christoph Engel)近期发表了一篇文章,对故意选择不知情的动机进行了细致分类。在他们识别出的动机中,有两组尤其与面对人工智能时对不知情的需求密切相关。

第一组动机围绕公正和公平展开。简而言之,知识有时会破坏判断力,而我们往往选择以故意不知情作为回应。例如,学术论文的同行评议通常是匿名的。大多数国家的保险公司在登记之前不得获取有关客户健康状况的细节;他们只能知道一般的健康风险因素。这种考虑尤其与人工智能关系密切,因为人工智能可以产生极具偏见的信息。

第二组相关的动机是情绪调节和避免遗憾。赫特维格和恩格尔写道,刻意的不知情可以帮助人们维持“珍视的信仰”,并避免“精神不适、恐惧和认知失调”。故意不知情其实非常盛行。调查中大约90%的德国人希望避免可能由于“预知诸如死亡和离婚等负面事件”而产生的负面情绪,40%到70%的人也不想知道正面事件,以帮助保持“对惊喜和悬念的积极感受”,比如不知道未出生孩子的性别。

这两组动机能帮助我们理解在人工智能面前保护不知情权的必要性。举例来说,人工智能“同志雷达”(gaydar)算法的潜在收益似乎接近于零,但是在公正性和公平性方面的潜在成本却很高。正如《经济学人》(The Economist)所说的那样,“在世界上同性恋社交不被接受或被认为非法的部分地区,这样的算法可能对安全构成严重威胁。”同样的,NtechLab目前正在开发的种族识别人工智能系统所能带来的潜在收益,与其对公正性和公平性的负面影响相比显得苍白许多。COMPAS累犯预测软件具有比人类更高的准确性,但正如Dressel和Farid所写,这“并不像我们想要的那种准确,尤其是从未来还悬而未决的被告者的角度来看”。预测个人预期寿命的算法,比如Aspire Health正在开发的算法,并不一定会让人们的情绪调节变得更容易。

这些例子说明了识别个体不知情动机的影响,并且展示了知识和无知的问题可以有多复杂,特别是在涉及人工智能的时候。关于集体不知情在什么时候有益处,或者在道德上合理的问题,没有现成的答案。理想的做法是单独考虑每个案例,进行风险收益分析。理想情况下,鉴于争论的复杂性和后果的重要性,这一分析将公开进行,考虑各种利益相关者和专家意见,并考虑所有可能的未来结果,包括最坏的情况。

这其中涉及的问题太多了……事实上,理想做法在大多数情况下都是行不通的。那么,我们又该如何做呢?

一种方法是控制和限制机器根据已采集数据进行的推理。例如,我们可以“禁止”使用种族作为预测变量的司法算法,或者从潜在求职者的预测分析中排除性别。但是,这种方法也存在问题。

首先,限制大公司使用信息的成本太高,技术难度也很大。这需要这些公司将算法开源,同时要求大型政府机构不断对其审查。另一方面,一旦采集到大量的数据集,总是会有很多迂回的方法来推理出“禁止的知识”。假设政府宣布使用性别信息来预测学术成功是非法的,那就可能出现使用“拥有汽车类型”和“最喜欢的音乐流派”作为性别替代指标,直接进行替代指标的二级推理。有时候,尽管一家公司的意图是好的,但有关性别的推理也可能意外地嵌入到算法中。这些二级推理导致对算法的审查更加困难。一个分析中包含的变量越多,发生二级推理的可能性就越大。

麻省理工学院的研究者在网站(moralmachine.mit.edu)上根据人们自己选择的数据类型,测试他们在机器即将做出决定的情况下表现出的道德直觉。

[1]  [2]  [3]  
相关文章
关于我们 | 联系我们 | 友情链接 | 版权声明
新科技网络【京ICP备15027068号】
Copyright © 2015 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。