雷锋网 AI 科技评论按,4 月 25 日,在由涂鸦智能联合知名财经媒体《新财富》、人工智能领域知名媒体《全球智能化商业》共同举办的「全球智能化商业峰会」上,斯坦福大学荣誉教授、新西兰皇家学会荣誉成员、世界级算法专家 Michael Saunders 进行了以「基於约束优化的算法:通用软件的益处」为主题的演讲。
Michael Saunders 曾任斯坦福大学管理科学与工程系教授。目前,他是斯坦福大学荣誉教授、数学家、世界级算法专家,工业与应用数学学会会士,新西兰皇家学会荣誉成员,斯坦福大学发明名人堂成员。
Michael Saunders 教授师从科学计算之父 Gene Golub,于 1972 年获得了斯坦福大学计算机科学博士学位,作为计算机领域的「大咖」,他曾获数学程式设计学会「William Orchard-Hays 奖」及工业与应用数学学会「暹罗线性代数奖」。据了解,目前其用于矩阵方程式和优化问题的数学算法在全球被广泛使用。Michael Saunders 教授曾为通用电气、波音公司等提供咨询服务。
Michael Saunders 教授的研究领域包括人工智能、大规模科学计算、大数据分析、系统优化、稀疏矩阵解法、软件工程、AIoT 等。
在他看来,互联互通一直都是 AIoT 产业的优化难题,例如此次会议的主办方涂鸦智能也推出了类似技术希望解决信息孤岛的问题,Saunders 教授在此领域贡献突出。
以下是此次 Michael Saunders 教授的演讲和专访纪要,雷锋网 AI 科技评论做了不改变原意的整理:
大家好!谢谢今天来现场的各位嘉宾,我很高兴来到中国。不好意思,我是新西兰人,我会说一点法语,一点西班牙语和一点英语,但是中文要难得多。
今天我想要和大家讲的是「约束优化」,在这之前,我想先谈一下为什么我会去斯坦福大学并参与计算机相关的科研,并谈谈关于约束优化的历史。
从新西兰到斯坦福,专注于「约束优化」
1972 年,我取得了在斯坦福大学的博士学位,我返回新西兰并以为我会就此永远待在新西兰,但斯坦福大学教授 George Dantzig,线性代数之父,他开始了系统优化实验室(SOL)计划,并且邀请我回到斯坦福。
在我参与系统优化实验室之时,Dantzig 教授负责建立经济和能量模型,而我则专注于非线性目标函数,并且研发 MINOS 优化软件的初始版本,以解决这些模型的问题。
当时,斯坦福大学教授 George Dantzig 提出了一种新的算法优化——即「约束优化」。这是一个很难的研究课题,它是在一系列约束条件下,寻找一组参数值,使某个或某一组函数的目标值达到最优。「约束优化」本质上是一个线性代数问题,通过软件来实现优化分析。
到了 1980 年代,我又延伸了 MINOS 用以处理一些非线性约束条件,并且我们开发了其他的约束优化软件用于通用电气和 NASA。
在 1990 年,我们的软件被用于温室效应模型,以及航太的优化问题,例如飞机和太空船的轨道优化。
我有一个做航空器的双胞胎兄弟大卫,他从 1975 年起,就在 NASA 的艾姆斯研究中心(Ames
Research Center)工作,他利用了我们的优化软件设计超音速飞机、新型的太空梭和太空
舱,虽然当中有些项目后来被取消了。
当然,我们的算法优化也用在了其它很多领域。比如,控制机器人的运行轨迹;还有医疗领域,我们可以瞄准 X 光光束,帮助医生进行放射治疗。
优化对航空应用至关重要
我们的软件被用于很多 NASA 很多航空项目,比如:
·航空器的外观要如何设计才能减少阻力。
·如果有一台拦截机要从海平面一直爬升到两万米的高空,我们会尽我们所能地减少其爬升的所需时间,这就是所谓的轨道优化。
·单级入轨火箭(single-stage-to-orbit,或简写为 SSTO)麦克唐纳-道格拉斯 DC-Y,当它进入轨道上时,它以类似于太空梭俯冲的姿势重新进入大气层,但在短短几秒钟之内,它又需要旋转并且以其尾部着地降落。我们优化了旋转落地的部分,让其用最少的燃料落地,这也是轨道优化的一种。