图5 Peregrine半导体的UltraCMOS Global 1 功放能够与GaAs功放的性能媲美,并且做到GaAs功放做不到的事:支持全球通用的单片SKU LTE器件。
图5说明,Peregrine的功放作为UltraCMOS Global 1系统的一部分,它的性能并不局限于有竞争力的WCDMA的性能,而且保持与GaAs相当的、用于LTE波形的PAE。在LTE标准中,按照指定给用户的信道带宽对资源块(RB)进行不同的分配。 5MHz的信道相当于25个RB,20MHz信道相当于100个RB。而且,这个数据是在没有使用数字预失真技术或包络跟踪的情况下得到的。
用第三方包络跟踪来提高性能
UltraCMOS Global 1功放没有使用包络跟踪就达到了有竞争力的GaAs功放的性能水平,同时,UltraCMOS Global 1本身支持包络跟踪( ET),并且已经设计成为支持目前市场上所有主要的解决方案。在功率饱和( PSAT )时的PAE说明了使用ET调制器可以达到甚么样的PAE,不过,ET带来的效率增强,与具体的频段有关。由于使用了包络跟踪器,UltraCMOS Global 1的PAE提高了20个百分点。
可重构
在CMOS平台上实现整个射频前端的一个最大好处是,它的高度可重构性赋予射频工程师的灵活性。有不同程度的可重构性从简单的偏置控制到整个射频调谐。Peregrine半导体充分发挥它在射频天线调谐产品方面的技术专长,把可重构的能力设计到UltraCMOS Global 1射频前端之中 。利用可重构系统,可以在所有频率上保持性能是一致的。在窄带解决方案中,这很少成为主要的问题,但是,对于宽带系统,会随着频率而明显地下降,由于工艺上的误差,以及电压和温度变化,会进一步加剧。
图6 通过可调谐的匹配网络,Peregrine半导体的UltraCMOS Global 1功放能够对性能进行优化,针对频带进行调谐,可以进一步抑制其他频段,对于减轻一些难以互操作的情况,是有帮助的。
在图6中的曲线是UltraCMOS Global 1 功放被调谐到了三个不同的调谐状态。这意味着调谐状态是根据操作频率进行选择的,以便达到最佳性能。例如,在790MHz选择调谐状态1,但是,在860MHZ,可以使用调谐状态2 。由于往往需要用一个功放尽可能高效率地支持多个频段,这点变得越来越重要。图中有一个典型的GaAs宽带功率放大器的性能特性,作为比较频率特性下降的基准。
在每个集成射频前端元件中,UltraCMOS Global 1提供了多种重构方案:
射频调谐:功放可以根据运作频率、调制方式或者使用的功率电平进行优化。通过调谐,UltraCMOS Global 1的每条信道可以在频段的基础上进行优化,在整个频率范围内,充份减少PAE和线性度的变化(图6 ) 。