璺�鐞涖儲婀並2閻ㄥ嫭鎭担鎾绘寢閳ユ柡鈧梹鍫¢懛锝呪偓宥呬淮闁芥K閿涘苯銈介崥鍛婃暪閹靛秳绨ㄩ崡濠傚閸婏拷璺�閺嗘垵浜i懖鐘哄剭閺勬挸鍤梻顕€顣介敍瀹璱fespace閻╁﹦鏁撻懣灞藉簻娴g姵澧﹂柅鐘蹭淮鎼村嘲銈介垾婊嗗亖閳ユ繃鈧拷璺�妫f牕鍨遍幀褏顫栭惍鏃€鍨氶弸婊愮窗閸栨ぞ鍚€规繃鐏氶悽鐔哄⒖缁佺偟绮¢柊鍛婃暭閸犲嚗IE濞岃崵鏋熼弫鍫熺亯璺�缁夋垵顒熼幎銈堝€介弨鑽ゆ殣閿涙岸娉�4闁插秵濮㈤懖婵囶槻缁€涚艾娑撯偓闊偆娈戦崑銉ョ暔闁倷绗夌€瑰綊鏁婃潻锟�璺�鐟欙綁鏀i煬顐f綏缁狅紕鎮婇弬鏉啃崝鍖$窗lifespace鐏忓繗鎽戦懙鎵抄閻㈢喕寮婚崝鈺€缍樼€圭偟骞囩粔鎴濐劅闊偅娼楃粻锛勬倞璺�婵″倷缍嶇粔鎴濐劅闂勫秷顢呴懘鍌︾吹娑撶粯澧︽径鈺冨姧閹存劕鍨庨惃鍕灊閻ф儳鐣炵痪瀹犵湸缁俱垺娲搁懗璺烘抄娴滃棜袙娑擄拷璺�閺勫棜鍚樻稉顓炴禇鐠у吀绗濆☉娑崇窗绾句礁鐢弰顖氬枎閺佺増宓侀惃鍕付娴e啿鐡ㄩ崒銊ょ矙鐠愶拷璺�婵″倷缍嶆晶鐐插繁閸忓秶鏌呴崝娑崇吹濮广倛鍤曢崐宥呬淮閾斿娅х划澶娿偨閽€銉ュ悋閺夈儮鈧粌濮弨鐑┾偓锟�璺�Canalys鐠嬪啰鐖洪敍姘厬閸ユ垝绱掓稉姘嚠娴滃簼绗傛禍鎴犳畱闂団偓濮瑰倷绮涢悞鏈电秵鏉╋拷璺�婢х偛绠欑搾锟�30% 閸楀簼璐熸稉濠呯殶2023閹靛婧€閸戦缚鎻i柌蹇氬殾4000娑撳洭鍎�璺�缁愪胶鐗径姘躲€嶉柌宥囧仯閹垛偓閺堬拷 濞搭亝鐤嗛崣鎴濈閸忋劍鏌婄粻妤€濮忕純鎴犵捕閹垮秳缍旂化鑽ょ埠璺�閼奉亝鍨滈惇瀣€滈敍鐔诲閺嬫粌銇囬獮鍛閸戝粰R婢跺瓨妯夐柨鈧崬顔炬窗閺嶅洩鍤�15娑撳洤褰�璺�閸楀簼璐熸禍鎴烆劀瀵繐褰傜敮鍐╂煀娑撯偓娴狅綀鍤滈惍鏂垮瀻鐢啫绱¢弫鐗堝祦鎼存弸aussDB璺�閸忋劎鎮嗙粭顑跨鐎硅绱掓稉澶嬫ЕQD-OLED閼剧òantone閸欏矁澹婅ぐ鈺傛綀婵炰浇顓荤拠锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�3999閸忓啳鎹i敍浣瑰閸欑姴鐫嗛幍瀣簚moto razr 40缁鍨锝呯础閸欐垵绔�璺�鐠愮绱掔槐銏犲嚬閹恒劌鍤璗OUGH娑撳妲籆Fexpress Type A鐎涙ê鍋嶉崡锟�璺�閸楀簼璐熷锝呯础閸欐垵绔烽弲铏圭暆閸忋劌鍘滈懕鏃€甯撮幋妯兼殣閸欙拷6濞嗛箖鍣哥壕鍛煀閸濓拷璺�閼辨柨褰傜粔鎴f噣娴滃鏆遍拕鈩冩娴犲绱版0鍕吀閹靛婧€娑撴艾濮熼張顏呮降娑撱倕鍕炬导姘杻闂€锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�閼垫崘顔嗘禍鎱恉geOne閸忋儵鈧artner DDoS缂傛捁袙閺傝顢嶇敮鍌氭簚閹稿洤宕�璺�閸楀簼璐烵ceanStor Pacific閸掑棗绔峰蹇撶摠閸屻劏骞廔O500濮掓粎顑囨稉鈧�璺�鐏忓繒鑳岄崣鎴濈2023楠炵繝绔寸€涳絽瀹崇拹銏″Г閿涙碍澹勬禍蹇庤礋閻╁牞绱濋崚鈺傞紟娑撳﹥瀹�璺�閼辨梹鍏傛稉濠佺鐠愩垹鍕鹃拃銉︽暪閸掆晜榧庨崣灞藉蓟娑撳绮� 闂堟扛C閺€璺哄弳閸楃姵鐦潻锟�40%璺�娴e疇鍏樻#鏍儥RF閳ユ粓銈奸獮娴嬧偓婵嬫殔婢剁ⅵF28mm F2.8 STM濮濓絽绱¢崣鎴濈璺�缁便垹鍑归崣鎴濈鏉炶闃€閸ㄥ鍙忛弲顖氾紣閸ョ偤鐓舵竟涓燭-S2000 閸烆喕鐜�2990閸忥拷璺�閻€劌寮搁拋锝勭皑闂€鍨悑CEO閻滃鏋冩禍顒婄窗閸忋劑娼伴弫鐗堟閸熷棔绗熼崚娑欐煀閺冩湹鍞崚鐗堟降璺�娑擃厼鍙碩ECS娴滄垵閽╅崣鎷岀箾缂侇厺绗侀獮纾嬪箯GlobalData Leader鐠囧嫮楠�璺�閸愬懏鐗抽弫浼村櫤娑撹桨绗熼悾灞炬付妤傛﹫绱扐mpere閸欐垵绔�192閺嶇RM婢跺嫮鎮婇崳锟�璺�Gartner閿涙俺鍚樼拋顖欑隘閼剧áPaaS閵嗕竼RM婢舵矮閲滅挧娑壕閸ヨ棄鍞寸粭顑跨
您现在的位置:首页 >> 滚动 >> 正文
MH370为何还没找到?因为官方机构算错了!
发表时间:2014年5月10日 07:03 来源:腾讯网 责任编辑:编 辑:麒麟

图表上的第一个ping信号是UTC时间16:30发出的,当时是起飞前11分钟。对于这个ping信号,图中的频移平约为-85赫兹。公共记录显示,从飞机到卫星的信号使用的频率是1626到1660兆赫。 STK的计算表明,当时卫星朝向机场的相对运动速度每小时仅有2英里。考虑到卫星在地平线上的的角度,MH370当时需要至少以50英里的时速在地面移动,才能产生这种频移——对于起飞前11分钟的飞机来说,这样快的速度真是令人难以置信。飞行记录表明,当时飞机还没有开始在跑道上滑行。

另一方面,频率图表显示,MH370在UTC时间00:11发出的最后一个ping信号,实测频移大约为-252赫兹,相当于说,飞机相对于卫星的飞行时速只有103英里。但国际海事卫星组织的南线示例图显示,飞机当时在朝远离卫星的方向,以大约272英里的时速飞行。

换句话说,在MH370航班飞行的最开始,频率的变化大大高于应有水平,到了最后,它们又远远低于应有水平。从这张图表来看,仿佛还有其他因素在影响这些频移数值,而不仅仅是卫星和飞机之间的运动。

破解“多普勒法则”

工程师埃克斯纳从上世纪70年代初期就开始研发卫星和气象技术,他指出,测得的频率变化可能不仅来自从飞机传送到卫星的ping信号,也来自随后从卫星传送到地面站(地面站把卫星连接到国际海事卫星组织的网络中)的ping信号。换句话说,埃克斯纳可能已经发现了导致频率图表扭曲的因素。

对于从卫星到地面站的信号传输是否对实测频移有影响,国际海事卫星组织的分析是非常含糊的。但是如果真的存在影响,那么,实测频移为什么一开始太大、最后又太小的原因,就确实可以用“一个位于卫星以南较远区域的地面站影响了频移”来解释了。果然,国际海事卫星组织在分析中称,接收传输信号的地面站位于澳大利亚。

我们还可以用更精确的方式来检查这个假设。国际海事卫星组织地面站的公共记录显示,澳大利亚只有一个地面站,位于珀斯。使用STK,你可以精确绘制出卫星相对于这个地面站的移动速度的图表,而且,使用卫星对地信号的频率(约3.6千兆赫),你可以把卫星对地的移动从频率图形中剔除。这下子,你终于可以计算出真实的“卫星对飞机”速度值了。

按照这个方法计算出来的结果近乎完美:对于起飞前的第一个ping信号,卫星对飞机的速度大约是每小时1英里——跟飞机在起飞前11分钟静止或缓慢滑行的情况非常吻合。这一发现似乎为解释这幅图表提供了一个基本的合理性检查,难怪埃克斯纳会在Twitter上宣布,“多普勒代码被破解了”。他制作了一张新的频移图表,如下图所示。平缓的蓝线显示卫星和位于珀斯的地面站之间的移动,而红色虚线显示按照新方法计算出的卫星对飞机的移动:

MH370为何还没找到?因为官方机构算错了!

埃克斯纳使用新方法制作的图表

为什么国际海事卫星组织的分析可能有误

如果这种解释——根据埃克斯纳、斯蒂尔、法勒等人的判断——是正确的,那么我们需要让独立的专家来对国际海事卫星组织的分析进行全面核查和验证,看看它是否忽略了一些重要的线索。这些线索可以进一步缩小飞机下落的搜寻范围。

问题是,虽然这种解释跟两条基本信息相吻合,它仍然跟国际海事卫星组织的南线示例图有矛盾。埃克斯纳用新方法得出的频率值,显示飞机在发出最后一个ping信号时,相对于卫星的时速大约只有144英里,但从国际海事卫星组织的南线示例图来看,这个时速约为272英里。

[1]  [2]  [3]  [4]  [5]  
关于我们 | 联系我们 | 友情链接
新科技网络【京ICP备14006744号】
Copyright © 2014 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。