图表上的第一个ping信号是UTC时间16:30发出的,当时是起飞前11分钟。对于这个ping信号,图中的频移平约为-85赫兹。公共记录显示,从飞机到卫星的信号使用的频率是1626到1660兆赫。 STK的计算表明,当时卫星朝向机场的相对运动速度每小时仅有2英里。考虑到卫星在地平线上的的角度,MH370当时需要至少以50英里的时速在地面移动,才能产生这种频移——对于起飞前11分钟的飞机来说,这样快的速度真是令人难以置信。飞行记录表明,当时飞机还没有开始在跑道上滑行。
另一方面,频率图表显示,MH370在UTC时间00:11发出的最后一个ping信号,实测频移大约为-252赫兹,相当于说,飞机相对于卫星的飞行时速只有103英里。但国际海事卫星组织的南线示例图显示,飞机当时在朝远离卫星的方向,以大约272英里的时速飞行。
换句话说,在MH370航班飞行的最开始,频率的变化大大高于应有水平,到了最后,它们又远远低于应有水平。从这张图表来看,仿佛还有其他因素在影响这些频移数值,而不仅仅是卫星和飞机之间的运动。
破解“多普勒法则”
工程师埃克斯纳从上世纪70年代初期就开始研发卫星和气象技术,他指出,测得的频率变化可能不仅来自从飞机传送到卫星的ping信号,也来自随后从卫星传送到地面站(地面站把卫星连接到国际海事卫星组织的网络中)的ping信号。换句话说,埃克斯纳可能已经发现了导致频率图表扭曲的因素。
对于从卫星到地面站的信号传输是否对实测频移有影响,国际海事卫星组织的分析是非常含糊的。但是如果真的存在影响,那么,实测频移为什么一开始太大、最后又太小的原因,就确实可以用“一个位于卫星以南较远区域的地面站影响了频移”来解释了。果然,国际海事卫星组织在分析中称,接收传输信号的地面站位于澳大利亚。
我们还可以用更精确的方式来检查这个假设。国际海事卫星组织地面站的公共记录显示,澳大利亚只有一个地面站,位于珀斯。使用STK,你可以精确绘制出卫星相对于这个地面站的移动速度的图表,而且,使用卫星对地信号的频率(约3.6千兆赫),你可以把卫星对地的移动从频率图形中剔除。这下子,你终于可以计算出真实的“卫星对飞机”速度值了。
按照这个方法计算出来的结果近乎完美:对于起飞前的第一个ping信号,卫星对飞机的速度大约是每小时1英里——跟飞机在起飞前11分钟静止或缓慢滑行的情况非常吻合。这一发现似乎为解释这幅图表提供了一个基本的合理性检查,难怪埃克斯纳会在Twitter上宣布,“多普勒代码被破解了”。他制作了一张新的频移图表,如下图所示。平缓的蓝线显示卫星和位于珀斯的地面站之间的移动,而红色虚线显示按照新方法计算出的卫星对飞机的移动:

为什么国际海事卫星组织的分析可能有误
如果这种解释——根据埃克斯纳、斯蒂尔、法勒等人的判断——是正确的,那么我们需要让独立的专家来对国际海事卫星组织的分析进行全面核查和验证,看看它是否忽略了一些重要的线索。这些线索可以进一步缩小飞机下落的搜寻范围。
问题是,虽然这种解释跟两条基本信息相吻合,它仍然跟国际海事卫星组织的南线示例图有矛盾。埃克斯纳用新方法得出的频率值,显示飞机在发出最后一个ping信号时,相对于卫星的时速大约只有144英里,但从国际海事卫星组织的南线示例图来看,这个时速约为272英里。