璺�鐞涖儲婀並2閻ㄥ嫭鎭担鎾绘寢閳ユ柡鈧梹鍫¢懛锝呪偓宥呬淮闁芥K閿涘苯銈介崥鍛婃暪閹靛秳绨ㄩ崡濠傚閸婏拷璺�閺嗘垵浜i懖鐘哄剭閺勬挸鍤梻顕€顣介敍瀹璱fespace閻╁﹦鏁撻懣灞藉簻娴g姵澧﹂柅鐘蹭淮鎼村嘲銈介垾婊嗗亖閳ユ繃鈧拷璺�妫f牕鍨遍幀褏顫栭惍鏃€鍨氶弸婊愮窗閸栨ぞ鍚€规繃鐏氶悽鐔哄⒖缁佺偟绮¢柊鍛婃暭閸犲嚗IE濞岃崵鏋熼弫鍫熺亯璺�缁夋垵顒熼幎銈堝€介弨鑽ゆ殣閿涙岸娉�4闁插秵濮㈤懖婵囶槻缁€涚艾娑撯偓闊偆娈戦崑銉ョ暔闁倷绗夌€瑰綊鏁婃潻锟�璺�鐟欙綁鏀i煬顐f綏缁狅紕鎮婇弬鏉啃崝鍖$窗lifespace鐏忓繗鎽戦懙鎵抄閻㈢喕寮婚崝鈺€缍樼€圭偟骞囩粔鎴濐劅闊偅娼楃粻锛勬倞璺�婵″倷缍嶇粔鎴濐劅闂勫秷顢呴懘鍌︾吹娑撶粯澧︽径鈺冨姧閹存劕鍨庨惃鍕灊閻ф儳鐣炵痪瀹犵湸缁俱垺娲搁懗璺烘抄娴滃棜袙娑擄拷璺�閺勫棜鍚樻稉顓炴禇鐠у吀绗濆☉娑崇窗绾句礁鐢弰顖氬枎閺佺増宓侀惃鍕付娴e啿鐡ㄩ崒銊ょ矙鐠愶拷璺�婵″倷缍嶆晶鐐插繁閸忓秶鏌呴崝娑崇吹濮广倛鍤曢崐宥呬淮閾斿娅х划澶娿偨閽€銉ュ悋閺夈儮鈧粌濮弨鐑┾偓锟�璺�Canalys鐠嬪啰鐖洪敍姘厬閸ユ垝绱掓稉姘嚠娴滃簼绗傛禍鎴犳畱闂団偓濮瑰倷绮涢悞鏈电秵鏉╋拷璺�婢х偛绠欑搾锟�30% 閸楀簼璐熸稉濠呯殶2023閹靛婧€閸戦缚鎻i柌蹇氬殾4000娑撳洭鍎�璺�缁愪胶鐗径姘躲€嶉柌宥囧仯閹垛偓閺堬拷 濞搭亝鐤嗛崣鎴濈閸忋劍鏌婄粻妤€濮忕純鎴犵捕閹垮秳缍旂化鑽ょ埠璺�閼奉亝鍨滈惇瀣€滈敍鐔诲閺嬫粌銇囬獮鍛閸戝粰R婢跺瓨妯夐柨鈧崬顔炬窗閺嶅洩鍤�15娑撳洤褰�璺�閸楀簼璐熸禍鎴烆劀瀵繐褰傜敮鍐╂煀娑撯偓娴狅綀鍤滈惍鏂垮瀻鐢啫绱¢弫鐗堝祦鎼存弸aussDB璺�閸忋劎鎮嗙粭顑跨鐎硅绱掓稉澶嬫ЕQD-OLED閼剧òantone閸欏矁澹婅ぐ鈺傛綀婵炰浇顓荤拠锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�3999閸忓啳鎹i敍浣瑰閸欑姴鐫嗛幍瀣簚moto razr 40缁鍨锝呯础閸欐垵绔�璺�鐠愮绱掔槐銏犲嚬閹恒劌鍤璗OUGH娑撳妲籆Fexpress Type A鐎涙ê鍋嶉崡锟�璺�閸楀簼璐熷锝呯础閸欐垵绔烽弲铏圭暆閸忋劌鍘滈懕鏃€甯撮幋妯兼殣閸欙拷6濞嗛箖鍣哥壕鍛煀閸濓拷璺�閼辨柨褰傜粔鎴f噣娴滃鏆遍拕鈩冩娴犲绱版0鍕吀閹靛婧€娑撴艾濮熼張顏呮降娑撱倕鍕炬导姘杻闂€锟�璺�濞村缈遍柊姝岀槸缁惧憡鈧簼绠為悽锟�璺�閼垫崘顔嗘禍鎱恉geOne閸忋儵鈧artner DDoS缂傛捁袙閺傝顢嶇敮鍌氭簚閹稿洤宕�璺�閸楀簼璐烵ceanStor Pacific閸掑棗绔峰蹇撶摠閸屻劏骞廔O500濮掓粎顑囨稉鈧�璺�鐏忓繒鑳岄崣鎴濈2023楠炵繝绔寸€涳絽瀹崇拹銏″Г閿涙碍澹勬禍蹇庤礋閻╁牞绱濋崚鈺傞紟娑撳﹥瀹�璺�閼辨梹鍏傛稉濠佺鐠愩垹鍕鹃拃銉︽暪閸掆晜榧庨崣灞藉蓟娑撳绮� 闂堟扛C閺€璺哄弳閸楃姵鐦潻锟�40%璺�娴e疇鍏樻#鏍儥RF閳ユ粓銈奸獮娴嬧偓婵嬫殔婢剁ⅵF28mm F2.8 STM濮濓絽绱¢崣鎴濈璺�缁便垹鍑归崣鎴濈鏉炶闃€閸ㄥ鍙忛弲顖氾紣閸ョ偤鐓舵竟涓燭-S2000 閸烆喕鐜�2990閸忥拷璺�閻€劌寮搁拋锝勭皑闂€鍨悑CEO閻滃鏋冩禍顒婄窗閸忋劑娼伴弫鐗堟閸熷棔绗熼崚娑欐煀閺冩湹鍞崚鐗堟降璺�娑擃厼鍙碩ECS娴滄垵閽╅崣鎷岀箾缂侇厺绗侀獮纾嬪箯GlobalData Leader鐠囧嫮楠�璺�閸愬懏鐗抽弫浼村櫤娑撹桨绗熼悾灞炬付妤傛﹫绱扐mpere閸欐垵绔�192閺嶇RM婢跺嫮鎮婇崳锟�璺�Gartner閿涙俺鍚樼拋顖欑隘閼剧áPaaS閵嗕竼RM婢舵矮閲滅挧娑壕閸ヨ棄鍞寸粭顑跨
您现在的位置:首页 >> 新•资讯 >> 正文
浅析RDMA网络下MMU水线设置 - 锐捷网络 — C114(中国通信网)
发表时间:2018年7月2日 18:23 来源:C114中国通信网 责任编辑:编 辑:麒麟

PG检测到触发XOFF水线,到构造PFC帧发出的时间(这里主要跟配置的检测精度以及平均队列算法相关,固定配置是固定值)

上游收到PFC Pause帧,到停止队列转发的时间(主要跟芯片处理性能有关系,交换芯片实际上是固定值)

PFC Pause帧在链路上的传输时间(跟AOC线缆/光纤距离成正比)

队列暂停发送后链路中报文的传输时间(跟AOC线缆/光纤距离成正比)

因此Headroom所需要的缓存大小,我们可以根据组网的架构,以及流量模型测算得出。以100米光纤线 + 100G光模块,缓存64字节小包,计算出所需的Headroom大小是408个cell(cell是缓存管理的最小单元,一个报文会占用1个或者多个cell),实际测试数据也吻合。当然,考虑一定的冗余性,Headroom设置建议比理论值稍大。

RDMA网络实践

锐捷网络在研发中心搭建了模拟真实业务的RDMA网络,架构如下:

▲锐捷网络RDMA组网架构

组网模型:大核心三级组网架构,核心采用高密100G线卡;

POD内:Spine采用提供64个100G接口的 BOX设备,Leaf采用提供48个25G接口+8个100G接口的BOX设备;

Leaf作为服务器网关,支持和服务器间基于PFC流控(识别报文的DSCP并进行PG映射),同时支持拥塞ECN标记;

RDMA仅运行于POD内部,不存在跨POD的RDMA流量,因此核心无需感知RDMA流量;

为了避免拥塞丢包,需要在Leaf与Spine之间部署PFC流控技术,同时Spine设备也需要支持基于拥塞的ECN标记;

Leaf和Spine设备支持PFC流控帧统计、ECN标记统计、拥塞丢包统计、基于队列的拥塞统计等,并支持将统计信息通过gRPC同步到远端gRPC服务器。

写在最后

锐捷网络在研发中心同样搭建了模拟真实业务的浸泡组网环境(包括RG-S6510、RG-S6520、RG-N18000-X系列25G/100G网络设备、大型测试仪、25G服务器)。在叠加了多种业务模型,并进行了长时间浸泡测试后,我们对于RDMA网络的MMU水线设置已有一些推荐的经验值。此外,在RDMA网络中,还存在一些部署难点,比如多级网络中 PFC风暴、死锁问题、ECN水线设计复杂问题等。对于这些问题,锐捷网络也有一些研究和积累,期待与大家共同探讨。

本期作者:颜晓波

锐捷网络互联网系统部行业咨询

感谢您关注锐捷网络技术干货文章!现诚邀您参与有奖调研,您宝贵的意见和建议将帮助我们在技术探索与分享上持续精进。

[1]  [2]  [3]  [4]  [5]  
相关文章
关于我们 | 联系我们 | 友情链接 | 版权声明
新科技网络【京ICP备15027068号】
Copyright © 2015 Hnetn.com, All Right Reserved
版权所有 新科技网络
本站郑重声明:本站所载文章、数据仅供参考,使用前请核实,风险自负。