黑洞和中子星都是巨型恒星惨烈死亡后的产物。当恒星燃料耗尽之后,它的核心便会崩塌成一颗中子星。而如果质量足够大的话,便会形成一个黑洞,密度大到连光线都无法从它的引力下逃脱。而如果恒星的外层忽然爆发的话,就会形成超新星。
超新星非常明亮。天文学家能够轻松地确定伽马射线暴的位置之后,他们发现伽马射线暴常常与超新星爆发同时发生。他们认为,这可能是因为死去的恒星在爆炸时释放的能量极多,从而产生了伽马射线。
但这种情境非常罕见,只有百分之一的超新星在爆发时会出现伽马射线暴。
当恒星崩塌成黑洞之后,剩下的气体会形成一个圆盘,围绕在黑洞周围,就像水聚集在排水口周围一样。物质被吸入黑洞中时,会释放出大量的能量,有些甚至会以接近光速的速度从黑洞中喷发出去。这些喷射物会产生伽马射线束,如果射线束朝向地球,就形成了伽马射线暴。
大多数天文学家都认为这是最具说服力的一种解释。“这确实能说得通,”麦克法迪恩说道,“但你还想百分之百地确定。”
确实还有很多问题没有得到解答。例如,人们仍不清楚这些射线暴的来源究竟是黑洞还是中子星。我们也不知道这些喷射物是如何产生的、是由什么构成的、以及它们是如何产生伽马射线的。
宇宙大冲撞
在二十一世纪之交,短射线暴的起源仍是天文学家面临的最大的未解之谜之一。至于长射线暴,解决问题的关键在于抓住射线暴的余辉,而这在当时是任何仪器都无能为力的。
因此,天文学家还需要另一架宇宙飞船来助力。2004年,NASA发射了Swift卫星。该卫星搭载了用于研究X射线和可见光波段余辉的望远镜,即使是最短的射线暴,它也能迅速判断射线暴所在的位置。不到六个月时间,Swift卫星就成功定位到了一次余辉。
“我们立刻就意识到,这次射线暴与长射线暴不同,” Swift任务的带头人尼尔?格瑞尔斯(Neil Gehrels)说道,“它并不是由恒星爆炸产生的。”
与长射线暴不同,这一次发现的射线暴并未与超新星爆发同时发生,而且它所属的星系类型也与此前不同。
长射线暴全部来源于类似银河系的螺旋星系。这些星系如同一片片沃土,孕育了许多恒星。能产生长射线暴的恒星必须质量很大,而且生命短暂,早早便夭亡了。
因此,在长射线暴的常见区域,必然有很多恒星在不断地孕育或消亡。但Swift卫星发现的射线暴来自一个满是衰老或死亡的恒星的星系。如果有恒星爆炸的话,肯定发生在很长时间之前。
所有这些迹象都指向了同一个假设:这次射线暴是由两颗中子星剧烈相撞形成的。根据天文学家的估算,宇宙中充满了成对的、绕对方轨道旋转的中子星。随着时间的推移,它们会靠得越来越近,最终合并在一起,释放出巨大的能量,也许还会产生伽马射线。
随着Swift卫星探测到更多的射线暴,局势也变得愈加明朗。“又发现了几次射线暴之后,我们终于能完全确定,之前的那次射线暴就是由中子星相撞时产生的。”
不过,大多数证据仍然是间接推断出来的。虽然到目前为止,所有的观测结果都与中子星合并的假说相符,但还没有人找到过板上钉钉的证据。例如,根据麦克法迪恩所言,中子星和黑洞相撞时也许也会产生短射线暴。